Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1110 Unicode version

Theorem bnj1110 29012
Description: Technical lemma for bnj69 29040. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1110.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1110.7  |-  D  =  ( om  \  { (/)
} )
bnj1110.18  |-  ( si  <->  ( ( j  e.  n  /\  j  _E  i
)  ->  et' ) )
bnj1110.19  |-  ( ph0  <->  (
i  e.  n  /\  si 
/\  f  e.  K  /\  i  e.  dom  f ) )
bnj1110.26  |-  ( et'  <->  (
( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) )
Assertion
Ref Expression
bnj1110  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) )
Distinct variable groups:    D, j    i, j    j, n
Allowed substitution hints:    ph( f, i, j, n)    ps( f,
i, j, n)    ch( f, i, j, n)    th( f,
i, j, n)    ta( f, i, j, n)    si( f,
i, j, n)    B( f, i, j, n)    D( f, i, n)    K( f,
i, j, n)    et'( f, i, j, n)    ph0( f, i, j, n)

Proof of Theorem bnj1110
StepHypRef Expression
1 bnj1110.7 . . . . . . . . 9  |-  D  =  ( om  \  { (/)
} )
21bnj1098 28815 . . . . . . . 8  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j ) )
3 bnj219 28761 . . . . . . . . . . 11  |-  ( i  =  suc  j  -> 
j  _E  i )
43adantl 452 . . . . . . . . . 10  |-  ( ( j  e.  n  /\  i  =  suc  j )  ->  j  _E  i
)
54ancli 534 . . . . . . . . 9  |-  ( ( j  e.  n  /\  i  =  suc  j )  ->  ( ( j  e.  n  /\  i  =  suc  j )  /\  j  _E  i )
)
6 df-3an 936 . . . . . . . . 9  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  <->  ( ( j  e.  n  /\  i  =  suc  j )  /\  j  _E  i ) )
75, 6sylibr 203 . . . . . . . 8  |-  ( ( j  e.  n  /\  i  =  suc  j )  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )
82, 7bnj1023 28812 . . . . . . 7  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )
9 bnj1110.3 . . . . . . . . . . . 12  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
109bnj1232 28836 . . . . . . . . . . 11  |-  ( ch 
->  n  e.  D
)
11103ad2ant3 978 . . . . . . . . . 10  |-  ( ( th  /\  ta  /\  ch )  ->  n  e.  D )
12 bnj1110.19 . . . . . . . . . . 11  |-  ( ph0  <->  (
i  e.  n  /\  si 
/\  f  e.  K  /\  i  e.  dom  f ) )
1312bnj1232 28836 . . . . . . . . . 10  |-  ( ph0  ->  i  e.  n )
1411, 13anim12ci 550 . . . . . . . . 9  |-  ( ( ( th  /\  ta  /\ 
ch )  /\  ph0 )  ->  ( i  e.  n  /\  n  e.  D
) )
1514anim2i 552 . . . . . . . 8  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( i  =/=  (/)  /\  ( i  e.  n  /\  n  e.  D ) ) )
16 3anass 938 . . . . . . . 8  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  <->  ( i  =/=  (/)  /\  ( i  e.  n  /\  n  e.  D ) ) )
1715, 16sylibr 203 . . . . . . 7  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )
188, 17bnj1101 28816 . . . . . 6  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
) )
19 3simpb 953 . . . . . . . . 9  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  ( j  e.  n  /\  j  _E  i
) )
2012bnj1235 28837 . . . . . . . . . . 11  |-  ( ph0  ->  si )
2120ad2antll 709 . . . . . . . . . 10  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  si )
22 bnj1110.18 . . . . . . . . . 10  |-  ( si  <->  ( ( j  e.  n  /\  j  _E  i
)  ->  et' ) )
2321, 22sylib 188 . . . . . . . . 9  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  j  _E  i )  ->  et' ) )
2419, 23syl5 28 . . . . . . . 8  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  et' ) )
2524a2i 12 . . . . . . 7  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )  -> 
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  ->  et' ) )
26 pm3.43 832 . . . . . . 7  |-  ( ( ( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
) )  /\  (
( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  et' ) )  ->  ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) )
2725, 26mpdan 649 . . . . . 6  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )  -> 
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) )
2818, 27bnj101 28749 . . . . 5  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) )
2912bnj1247 28841 . . . . . . 7  |-  ( ph0  ->  f  e.  K )
3029ad2antll 709 . . . . . 6  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  f  e.  K )
31 pm3.43i 442 . . . . . 6  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  f  e.  K )  ->  (
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) )  ->  ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) ) ) )
3230, 31ax-mp 8 . . . . 5  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) )  ->  (
( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) ) )
3328, 32bnj101 28749 . . . 4  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) )
34 fndm 5343 . . . . . . . . 9  |-  ( f  Fn  n  ->  dom  f  =  n )
359, 34bnj770 28793 . . . . . . . 8  |-  ( ch 
->  dom  f  =  n )
36353ad2ant3 978 . . . . . . 7  |-  ( ( th  /\  ta  /\  ch )  ->  dom  f  =  n )
3736ad2antrl 708 . . . . . 6  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  dom  f  =  n )
3837eleq2d 2350 . . . . 5  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  dom  f  <->  j  e.  n ) )
39 pm3.43i 442 . . . . 5  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  dom  f  <->  j  e.  n ) )  -> 
( ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) )  ->  ( (
i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) ) )
4038, 39ax-mp 8 . . . 4  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) )  ->  ( (
i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) )
4133, 40bnj101 28749 . . 3  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e. 
dom  f  <->  j  e.  n )  /\  (
f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) )
42 bnj268 28734 . . . . . 6  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  f  e.  K  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' )  <->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  f  e.  K  /\  et' ) )
43 bnj251 28727 . . . . . 6  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  f  e.  K  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' )  <->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) )
4442, 43bitr3i 242 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  <->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) )
4544imbi2i 303 . . . 4  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  f  e.  K  /\  et' ) )  <->  ( (
i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) )
4645exbii 1569 . . 3  |-  ( E. j ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  f  e.  K  /\  et' ) )  <->  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e. 
dom  f  <->  j  e.  n )  /\  (
f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) )
4741, 46mpbir 200 . 2  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e. 
dom  f  <->  j  e.  n )  /\  (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' ) )
48 simp1 955 . . . 4  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  j  e.  n )
4948bnj706 28783 . . 3  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
j  e.  n )
50 simp2 956 . . . 4  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  i  =  suc  j
)
5150bnj706 28783 . . 3  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
i  =  suc  j
)
52 bnj258 28733 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  <->  ( (
( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' )  /\  f  e.  K )
)
5352simprbi 450 . . . 4  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
f  e.  K )
54 bnj642 28777 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( j  e.  dom  f 
<->  j  e.  n ) )
5549, 54mpbird 223 . . . 4  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
j  e.  dom  f
)
56 bnj645 28779 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  ->  et' )
57 bnj1110.26 . . . . 5  |-  ( et'  <->  (
( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) )
5856, 57sylib 188 . . . 4  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( ( f  e.  K  /\  j  e. 
dom  f )  -> 
( f `  j
)  C_  B )
)
5953, 55, 58mp2and 660 . . 3  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( f `  j
)  C_  B )
6049, 51, 593jca 1132 . 2  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) )
6147, 60bnj1023 28812 1  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    C_ wss 3152   (/)c0 3455   {csn 3640   class class class wbr 4023    _E cep 4303   suc csuc 4394   omcom 4656   dom cdm 4689    Fn wfn 5250   ` cfv 5255    /\ w-bnj17 28711
This theorem is referenced by:  bnj1118  29014
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-fn 5258  df-bnj17 28712
  Copyright terms: Public domain W3C validator