Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1112 Unicode version

Theorem bnj1112 28524
Description: Technical lemma for bnj69 28551. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1112.1  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj1112  |-  ( ps  <->  A. j ( ( j  e.  om  /\  suc  j  e.  n )  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) )
Distinct variable groups:    A, i,
j    R, i, j    f,
i, j, y    i, n, j
Allowed substitution hints:    ps( y, f, i, j, n)    A( y, f, n)    R( y,
f, n)

Proof of Theorem bnj1112
StepHypRef Expression
1 bnj1112.1 . . 3  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
21bnj115 28262 . 2  |-  ( ps  <->  A. i ( ( i  e.  om  /\  suc  i  e.  n )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3 eleq1 2376 . . . . 5  |-  ( i  =  j  ->  (
i  e.  om  <->  j  e.  om ) )
4 suceq 4494 . . . . . 6  |-  ( i  =  j  ->  suc  i  =  suc  j )
54eleq1d 2382 . . . . 5  |-  ( i  =  j  ->  ( suc  i  e.  n  <->  suc  j  e.  n ) )
63, 5anbi12d 691 . . . 4  |-  ( i  =  j  ->  (
( i  e.  om  /\ 
suc  i  e.  n
)  <->  ( j  e. 
om  /\  suc  j  e.  n ) ) )
74fveq2d 5567 . . . . 5  |-  ( i  =  j  ->  (
f `  suc  i )  =  ( f `  suc  j ) )
8 fveq2 5563 . . . . . 6  |-  ( i  =  j  ->  (
f `  i )  =  ( f `  j ) )
98bnj1113 28328 . . . . 5  |-  ( i  =  j  ->  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  j
)  pred ( y ,  A ,  R ) )
107, 9eqeq12d 2330 . . . 4  |-  ( i  =  j  ->  (
( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R )  <->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) )
116, 10imbi12d 311 . . 3  |-  ( i  =  j  ->  (
( ( i  e. 
om  /\  suc  i  e.  n )  ->  (
f `  suc  i )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )  <->  ( ( j  e.  om  /\  suc  j  e.  n )  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) ) )
1211cbvalv 1974 . 2  |-  ( A. i ( ( i  e.  om  /\  suc  i  e.  n )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. j
( ( j  e. 
om  /\  suc  j  e.  n )  ->  (
f `  suc  j )  =  U_ y  e.  ( f `  j
)  pred ( y ,  A ,  R ) ) )
132, 12bitri 240 1  |-  ( ps  <->  A. j ( ( j  e.  om  /\  suc  j  e.  n )  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1531    = wceq 1633    e. wcel 1701   A.wral 2577   U_ciun 3942   suc csuc 4431   omcom 4693   ` cfv 5292    predc-bnj14 28224
This theorem is referenced by:  bnj1118  28525
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-suc 4435  df-iota 5256  df-fv 5300
  Copyright terms: Public domain W3C validator