Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1123 Structured version   Unicode version

Theorem bnj1123 29355
Description: Technical lemma for bnj69 29379. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1123.4  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj1123.3  |-  K  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
bnj1123.1  |-  ( et  <->  ( ( f  e.  K  /\  i  e.  dom  f )  ->  (
f `  i )  C_  B ) )
bnj1123.2  |-  ( et'  <->  [. j  /  i ]. et )
Assertion
Ref Expression
bnj1123  |-  ( et'  <->  (
( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) )
Distinct variable groups:    B, i    D, i    f, i    i,
j    i, n    ph, i
Allowed substitution hints:    ph( y, f, j, n)    ps( y,
f, i, j, n)    et( y, f, i, j, n)    A( y, f, i, j, n)    B( y,
f, j, n)    D( y, f, j, n)    R( y, f, i, j, n)    K( y, f, i, j, n)    et'( y, f, i, j, n)

Proof of Theorem bnj1123
StepHypRef Expression
1 bnj1123.2 . 2  |-  ( et'  <->  [. j  /  i ]. et )
2 bnj1123.1 . . 3  |-  ( et  <->  ( ( f  e.  K  /\  i  e.  dom  f )  ->  (
f `  i )  C_  B ) )
32sbcbii 3216 . 2  |-  ( [. j  /  i ]. et  <->  [. j  /  i ]. ( ( f  e.  K  /\  i  e. 
dom  f )  -> 
( f `  i
)  C_  B )
)
4 vex 2959 . . 3  |-  j  e. 
_V
5 bnj1123.3 . . . . . . . 8  |-  K  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
6 nfcv 2572 . . . . . . . . . 10  |-  F/_ i D
7 nfv 1629 . . . . . . . . . . 11  |-  F/ i  f  Fn  n
8 nfv 1629 . . . . . . . . . . 11  |-  F/ i
ph
9 bnj1123.4 . . . . . . . . . . . . 13  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
109bnj1095 29152 . . . . . . . . . . . 12  |-  ( ps 
->  A. i ps )
1110nfi 1560 . . . . . . . . . . 11  |-  F/ i ps
127, 8, 11nf3an 1849 . . . . . . . . . 10  |-  F/ i ( f  Fn  n  /\  ph  /\  ps )
136, 12nfrex 2761 . . . . . . . . 9  |-  F/ i E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps )
1413nfab 2576 . . . . . . . 8  |-  F/_ i { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
155, 14nfcxfr 2569 . . . . . . 7  |-  F/_ i K
1615nfcri 2566 . . . . . 6  |-  F/ i  f  e.  K
17 nfv 1629 . . . . . 6  |-  F/ i  j  e.  dom  f
1816, 17nfan 1846 . . . . 5  |-  F/ i ( f  e.  K  /\  j  e.  dom  f )
19 nfv 1629 . . . . 5  |-  F/ i ( f `  j
)  C_  B
2018, 19nfim 1832 . . . 4  |-  F/ i ( ( f  e.  K  /\  j  e. 
dom  f )  -> 
( f `  j
)  C_  B )
21 eleq1 2496 . . . . . 6  |-  ( i  =  j  ->  (
i  e.  dom  f  <->  j  e.  dom  f ) )
2221anbi2d 685 . . . . 5  |-  ( i  =  j  ->  (
( f  e.  K  /\  i  e.  dom  f )  <->  ( f  e.  K  /\  j  e.  dom  f ) ) )
23 fveq2 5728 . . . . . 6  |-  ( i  =  j  ->  (
f `  i )  =  ( f `  j ) )
2423sseq1d 3375 . . . . 5  |-  ( i  =  j  ->  (
( f `  i
)  C_  B  <->  ( f `  j )  C_  B
) )
2522, 24imbi12d 312 . . . 4  |-  ( i  =  j  ->  (
( ( f  e.  K  /\  i  e. 
dom  f )  -> 
( f `  i
)  C_  B )  <->  ( ( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) ) )
2620, 25sbciegf 3192 . . 3  |-  ( j  e.  _V  ->  ( [. j  /  i ]. ( ( f  e.  K  /\  i  e. 
dom  f )  -> 
( f `  i
)  C_  B )  <->  ( ( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) ) )
274, 26ax-mp 8 . 2  |-  ( [. j  /  i ]. (
( f  e.  K  /\  i  e.  dom  f )  ->  (
f `  i )  C_  B )  <->  ( (
f  e.  K  /\  j  e.  dom  f )  ->  ( f `  j )  C_  B
) )
281, 3, 273bitri 263 1  |-  ( et'  <->  (
( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {cab 2422   A.wral 2705   E.wrex 2706   _Vcvv 2956   [.wsbc 3161    C_ wss 3320   U_ciun 4093   suc csuc 4583   omcom 4845   dom cdm 4878    Fn wfn 5449   ` cfv 5454    predc-bnj14 29052
This theorem is referenced by:  bnj1030  29356
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462
  Copyright terms: Public domain W3C validator