Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1125 Unicode version

Theorem bnj1125 29022
Description: Property of  trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1125  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R
) )  ->  trCl ( Y ,  A ,  R )  C_  trCl ( X ,  A ,  R ) )

Proof of Theorem bnj1125
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simp1 955 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R
) )  ->  R  FrSe  A )
2 bnj1127 29021 . . 3  |-  ( Y  e.  trCl ( X ,  A ,  R )  ->  Y  e.  A )
323ad2ant3 978 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R
) )  ->  Y  e.  A )
4 bnj893 28960 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  e.  _V )
543adant3 975 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R
) )  ->  trCl ( X ,  A ,  R )  e.  _V )
6 bnj1029 28998 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  TrFo (  trCl ( X ,  A ,  R ) ,  A ,  R ) )
763adant3 975 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R
) )  ->  TrFo (  trCl ( X ,  A ,  R ) ,  A ,  R ) )
8 simp3 957 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R
) )  ->  Y  e.  trCl ( X ,  A ,  R )
)
9 elisset 2798 . . . . 5  |-  ( Y  e.  trCl ( X ,  A ,  R )  ->  E. y  y  =  Y )
1093ad2ant3 978 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R
) )  ->  E. y 
y  =  Y )
11 df-bnj19 28722 . . . . . . . 8  |-  (  TrFo (  trCl ( X ,  A ,  R ) ,  A ,  R )  <->  A. y  e.  trCl  ( X ,  A ,  R )  pred (
y ,  A ,  R )  C_  trCl ( X ,  A ,  R ) )
12 rsp 2603 . . . . . . . 8  |-  ( A. y  e.  trCl  ( X ,  A ,  R
)  pred ( y ,  A ,  R ) 
C_  trCl ( X ,  A ,  R )  ->  ( y  e.  trCl ( X ,  A ,  R )  ->  pred (
y ,  A ,  R )  C_  trCl ( X ,  A ,  R ) ) )
1311, 12sylbi 187 . . . . . . 7  |-  (  TrFo (  trCl ( X ,  A ,  R ) ,  A ,  R )  ->  ( y  e. 
trCl ( X ,  A ,  R )  ->  pred ( y ,  A ,  R ) 
C_  trCl ( X ,  A ,  R )
) )
147, 13syl 15 . . . . . 6  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R
) )  ->  (
y  e.  trCl ( X ,  A ,  R )  ->  pred (
y ,  A ,  R )  C_  trCl ( X ,  A ,  R ) ) )
15 eleq1 2343 . . . . . . 7  |-  ( y  =  Y  ->  (
y  e.  trCl ( X ,  A ,  R )  <->  Y  e.  trCl ( X ,  A ,  R ) ) )
16 bnj602 28947 . . . . . . . 8  |-  ( y  =  Y  ->  pred (
y ,  A ,  R )  =  pred ( Y ,  A ,  R ) )
1716sseq1d 3205 . . . . . . 7  |-  ( y  =  Y  ->  (  pred ( y ,  A ,  R )  C_  trCl ( X ,  A ,  R )  <->  pred ( Y ,  A ,  R
)  C_  trCl ( X ,  A ,  R
) ) )
1815, 17imbi12d 311 . . . . . 6  |-  ( y  =  Y  ->  (
( y  e.  trCl ( X ,  A ,  R )  ->  pred (
y ,  A ,  R )  C_  trCl ( X ,  A ,  R ) )  <->  ( Y  e.  trCl ( X ,  A ,  R )  ->  pred ( Y ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
) ) )
1914, 18syl5ib 210 . . . . 5  |-  ( y  =  Y  ->  (
( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R ) )  -> 
( Y  e.  trCl ( X ,  A ,  R )  ->  pred ( Y ,  A ,  R )  C_  trCl ( X ,  A ,  R ) ) ) )
2019exlimiv 1666 . . . 4  |-  ( E. y  y  =  Y  ->  ( ( R 
FrSe  A  /\  X  e.  A  /\  Y  e. 
trCl ( X ,  A ,  R )
)  ->  ( Y  e.  trCl ( X ,  A ,  R )  ->  pred ( Y ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
) ) )
2110, 20mpcom 32 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R
) )  ->  ( Y  e.  trCl ( X ,  A ,  R
)  ->  pred ( Y ,  A ,  R
)  C_  trCl ( X ,  A ,  R
) ) )
228, 21mpd 14 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R
) )  ->  pred ( Y ,  A ,  R )  C_  trCl ( X ,  A ,  R ) )
23 biid 227 . . 3  |-  ( ( R  FrSe  A  /\  Y  e.  A )  <->  ( R  FrSe  A  /\  Y  e.  A )
)
24 biid 227 . . 3  |-  ( ( 
trCl ( X ,  A ,  R )  e.  _V  /\  TrFo (  trCl ( X ,  A ,  R ) ,  A ,  R )  /\  pred ( Y ,  A ,  R )  C_  trCl ( X ,  A ,  R ) )  <->  (  trCl ( X ,  A ,  R )  e.  _V  /\ 
TrFo (  trCl ( X ,  A ,  R ) ,  A ,  R )  /\  pred ( Y ,  A ,  R )  C_  trCl ( X ,  A ,  R ) ) )
2523, 24bnj1124 29018 . 2  |-  ( ( ( R  FrSe  A  /\  Y  e.  A
)  /\  (  trCl ( X ,  A ,  R )  e.  _V  /\ 
TrFo (  trCl ( X ,  A ,  R ) ,  A ,  R )  /\  pred ( Y ,  A ,  R )  C_  trCl ( X ,  A ,  R ) ) )  ->  trCl ( Y ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
)
261, 3, 5, 7, 22, 25syl23anc 1189 1  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  Y  e.  trCl ( X ,  A ,  R
) )  ->  trCl ( Y ,  A ,  R )  C_  trCl ( X ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152    predc-bnj14 28713    FrSe w-bnj15 28717    trClc-bnj18 28719    TrFow-bnj19 28721
This theorem is referenced by:  bnj1137  29025  bnj1136  29027  bnj1175  29034  bnj1408  29066  bnj1417  29071  bnj1452  29082
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-reg 7306  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-bnj17 28712  df-bnj14 28714  df-bnj13 28716  df-bnj15 28718  df-bnj18 28720  df-bnj19 28722
  Copyright terms: Public domain W3C validator