Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1133 Unicode version

Theorem bnj1133 29335
Description: Technical lemma for bnj69 29356. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1133.3  |-  D  =  ( om  \  { (/)
} )
bnj1133.5  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1133.7  |-  ( ta  <->  A. j  e.  n  ( j  _E  i  ->  [. j  /  i ]. th ) )
bnj1133.8  |-  ( ( i  e.  n  /\  ta )  ->  th )
Assertion
Ref Expression
bnj1133  |-  ( ch 
->  A. i  e.  n  th )
Distinct variable groups:    i, j, n    th, j
Allowed substitution hints:    ph( f, i, j, n)    ps( f,
i, j, n)    ch( f, i, j, n)    th( f,
i, n)    ta( f,
i, j, n)    D( f, i, j, n)

Proof of Theorem bnj1133
StepHypRef Expression
1 bnj1133.5 . . 3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
2 bnj1133.3 . . . 4  |-  D  =  ( om  \  { (/)
} )
32bnj1071 29323 . . 3  |-  ( n  e.  D  ->  _E  Fr  n )
41, 3bnj769 29108 . 2  |-  ( ch 
->  _E  Fr  n )
5 impexp 433 . . . . . 6  |-  ( ( ( i  e.  n  /\  ta )  ->  th )  <->  ( i  e.  n  -> 
( ta  ->  th )
) )
65bicomi 193 . . . . 5  |-  ( ( i  e.  n  -> 
( ta  ->  th )
)  <->  ( ( i  e.  n  /\  ta )  ->  th ) )
76albii 1556 . . . 4  |-  ( A. i ( i  e.  n  ->  ( ta  ->  th ) )  <->  A. i
( ( i  e.  n  /\  ta )  ->  th ) )
8 bnj1133.8 . . . 4  |-  ( ( i  e.  n  /\  ta )  ->  th )
97, 8mpgbir 1540 . . 3  |-  A. i
( i  e.  n  ->  ( ta  ->  th )
)
10 df-ral 2561 . . 3  |-  ( A. i  e.  n  ( ta  ->  th )  <->  A. i
( i  e.  n  ->  ( ta  ->  th )
) )
119, 10mpbir 200 . 2  |-  A. i  e.  n  ( ta  ->  th )
12 vex 2804 . . 3  |-  n  e. 
_V
13 bnj1133.7 . . 3  |-  ( ta  <->  A. j  e.  n  ( j  _E  i  ->  [. j  /  i ]. th ) )
1412, 13bnj110 29206 . 2  |-  ( (  _E  Fr  n  /\  A. i  e.  n  ( ta  ->  th )
)  ->  A. i  e.  n  th )
154, 11, 14sylancl 643 1  |-  ( ch 
->  A. i  e.  n  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   A.wral 2556   [.wsbc 3004    \ cdif 3162   (/)c0 3468   {csn 3653   class class class wbr 4039    _E cep 4319    Fr wfr 4365   omcom 4672    Fn wfn 5266    /\ w-bnj17 29027
This theorem is referenced by:  bnj1128  29336
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-bnj17 29028
  Copyright terms: Public domain W3C validator