Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1143 Structured version   Unicode version

Theorem bnj1143 29223
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1143  |-  U_ x  e.  A  B  C_  B
Distinct variable groups:    x, A    x, B

Proof of Theorem bnj1143
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4097 . . . 4  |-  U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
2 notnot 284 . . . . . . . 8  |-  ( A  =  (/)  <->  -.  -.  A  =  (/) )
3 neq0 3640 . . . . . . . 8  |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
42, 3xchbinx 303 . . . . . . 7  |-  ( A  =  (/)  <->  -.  E. x  x  e.  A )
5 df-rex 2713 . . . . . . . . 9  |-  ( E. x  e.  A  z  e.  B  <->  E. x
( x  e.  A  /\  z  e.  B
) )
6 exsimpl 1603 . . . . . . . . 9  |-  ( E. x ( x  e.  A  /\  z  e.  B )  ->  E. x  x  e.  A )
75, 6sylbi 189 . . . . . . . 8  |-  ( E. x  e.  A  z  e.  B  ->  E. x  x  e.  A )
87con3i 130 . . . . . . 7  |-  ( -. 
E. x  x  e.  A  ->  -.  E. x  e.  A  z  e.  B )
94, 8sylbi 189 . . . . . 6  |-  ( A  =  (/)  ->  -.  E. x  e.  A  z  e.  B )
109alrimiv 1642 . . . . 5  |-  ( A  =  (/)  ->  A. z  -.  E. x  e.  A  z  e.  B )
11 notnot 284 . . . . . . 7  |-  ( { y  |  E. x  e.  A  y  e.  B }  =  (/)  <->  -.  -.  {
y  |  E. x  e.  A  y  e.  B }  =  (/) )
12 neq0 3640 . . . . . . . 8  |-  ( -. 
U_ x  e.  A  B  =  (/)  <->  E. z 
z  e.  U_ x  e.  A  B )
131eqeq1i 2445 . . . . . . . . 9  |-  ( U_ x  e.  A  B  =  (/)  <->  { y  |  E. x  e.  A  y  e.  B }  =  (/) )
1413notbii 289 . . . . . . . 8  |-  ( -. 
U_ x  e.  A  B  =  (/)  <->  -.  { y  |  E. x  e.  A  y  e.  B }  =  (/) )
15 df-iun 4097 . . . . . . . . . 10  |-  U_ x  e.  A  B  =  { z  |  E. x  e.  A  z  e.  B }
1615eleq2i 2502 . . . . . . . . 9  |-  ( z  e.  U_ x  e.  A  B  <->  z  e.  { z  |  E. x  e.  A  z  e.  B } )
1716exbii 1593 . . . . . . . 8  |-  ( E. z  z  e.  U_ x  e.  A  B  <->  E. z  z  e.  {
z  |  E. x  e.  A  z  e.  B } )
1812, 14, 173bitr3i 268 . . . . . . 7  |-  ( -. 
{ y  |  E. x  e.  A  y  e.  B }  =  (/)  <->  E. z  z  e.  { z  |  E. x  e.  A  z  e.  B } )
1911, 18xchbinx 303 . . . . . 6  |-  ( { y  |  E. x  e.  A  y  e.  B }  =  (/)  <->  -.  E. z 
z  e.  { z  |  E. x  e.  A  z  e.  B } )
20 alnex 1553 . . . . . 6  |-  ( A. z  -.  z  e.  {
z  |  E. x  e.  A  z  e.  B }  <->  -.  E. z 
z  e.  { z  |  E. x  e.  A  z  e.  B } )
21 abid 2426 . . . . . . . 8  |-  ( z  e.  { z  |  E. x  e.  A  z  e.  B }  <->  E. x  e.  A  z  e.  B )
2221notbii 289 . . . . . . 7  |-  ( -.  z  e.  { z  |  E. x  e.  A  z  e.  B } 
<->  -.  E. x  e.  A  z  e.  B
)
2322albii 1576 . . . . . 6  |-  ( A. z  -.  z  e.  {
z  |  E. x  e.  A  z  e.  B }  <->  A. z  -.  E. x  e.  A  z  e.  B )
2419, 20, 233bitr2i 266 . . . . 5  |-  ( { y  |  E. x  e.  A  y  e.  B }  =  (/)  <->  A. z  -.  E. x  e.  A  z  e.  B )
2510, 24sylibr 205 . . . 4  |-  ( A  =  (/)  ->  { y  |  E. x  e.  A  y  e.  B }  =  (/) )
261, 25syl5eq 2482 . . 3  |-  ( A  =  (/)  ->  U_ x  e.  A  B  =  (/) )
27 0ss 3658 . . 3  |-  (/)  C_  B
2826, 27syl6eqss 3400 . 2  |-  ( A  =  (/)  ->  U_ x  e.  A  B  C_  B
)
29 iunconst 4103 . . 3  |-  ( A  =/=  (/)  ->  U_ x  e.  A  B  =  B )
30 eqimss 3402 . . 3  |-  ( U_ x  e.  A  B  =  B  ->  U_ x  e.  A  B  C_  B
)
3129, 30syl 16 . 2  |-  ( A  =/=  (/)  ->  U_ x  e.  A  B  C_  B
)
3228, 31pm2.61ine 2682 1  |-  U_ x  e.  A  B  C_  B
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 360   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2424    =/= wne 2601   E.wrex 2708    C_ wss 3322   (/)c0 3630   U_ciun 4095
This theorem is referenced by:  bnj1146  29224  bnj1145  29424  bnj1136  29428
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-v 2960  df-dif 3325  df-in 3329  df-ss 3336  df-nul 3631  df-iun 4097
  Copyright terms: Public domain W3C validator