Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1145 Structured version   Unicode version

Theorem bnj1145 29424
Description: Technical lemma for bnj69 29441. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1145.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj1145.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj1145.3  |-  D  =  ( om  \  { (/)
} )
bnj1145.4  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
bnj1145.5  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1145.6  |-  ( th  <->  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  ( j  e.  n  /\  i  =  suc  j ) ) )
Assertion
Ref Expression
bnj1145  |-  trCl ( X ,  A ,  R )  C_  A
Distinct variable groups:    A, f,
i, j, n, y    D, i, j    R, f, i, j, n, y   
f, X, i, n, y    ch, j    ph, i
Allowed substitution hints:    ph( y, f, j, n)    ps( y,
f, i, j, n)    ch( y, f, i, n)    th( y, f, i, j, n)    B( y, f, i, j, n)    D( y,
f, n)    X( j)

Proof of Theorem bnj1145
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bnj1145.1 . . 3  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 bnj1145.2 . . 3  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3 bnj1145.3 . . 3  |-  D  =  ( om  \  { (/)
} )
4 bnj1145.4 . . 3  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
51, 2, 3, 4bnj882 29359 . 2  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  B  U_ i  e.  dom  f ( f `
 i )
6 ss2iun 4110 . . . 4  |-  ( A. f  e.  B  U_ i  e.  dom  f ( f `
 i )  C_  A  ->  U_ f  e.  B  U_ i  e.  dom  f
( f `  i
)  C_  U_ f  e.  B  A )
7 bnj1145.5 . . . . . . 7  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
87, 4bnj1083 29409 . . . . . 6  |-  ( f  e.  B  <->  E. n ch )
92bnj1095 29214 . . . . . . . . . 10  |-  ( ps 
->  A. i ps )
109, 7bnj1096 29215 . . . . . . . . 9  |-  ( ch 
->  A. i ch )
1110nfi 1561 . . . . . . . 8  |-  F/ i ch
123bnj1098 29216 . . . . . . . . . . . . . . . . 17  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j ) )
137bnj1232 29237 . . . . . . . . . . . . . . . . . 18  |-  ( ch 
->  n  e.  D
)
14133anim3i 1142 . . . . . . . . . . . . . . . . 17  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )
1512, 14bnj1101 29217 . . . . . . . . . . . . . . . 16  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  (
j  e.  n  /\  i  =  suc  j ) )
16 ancl 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( j  e.  n  /\  i  =  suc  j ) )  -> 
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  (
( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  ( j  e.  n  /\  i  =  suc  j ) ) ) )
1715, 16bnj101 29150 . . . . . . . . . . . . . . 15  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  (
( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  ( j  e.  n  /\  i  =  suc  j ) ) )
18 bnj1145.6 . . . . . . . . . . . . . . . . 17  |-  ( th  <->  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  ( j  e.  n  /\  i  =  suc  j ) ) )
1918imbi2i 305 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  th )  <->  ( (
i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  (
j  e.  n  /\  i  =  suc  j ) ) ) )
2019exbii 1593 . . . . . . . . . . . . . . 15  |-  ( E. j ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  th )  <->  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  (
( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  ( j  e.  n  /\  i  =  suc  j ) ) ) )
2117, 20mpbir 202 . . . . . . . . . . . . . 14  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  th )
22 bnj213 29315 . . . . . . . . . . . . . . . 16  |-  pred (
y ,  A ,  R )  C_  A
2322bnj226 29163 . . . . . . . . . . . . . . 15  |-  U_ y  e.  ( f `  j
)  pred ( y ,  A ,  R ) 
C_  A
24 simpr 449 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  n  /\  i  =  suc  j )  ->  i  =  suc  j )
2518, 24bnj833 29189 . . . . . . . . . . . . . . . . . 18  |-  ( th 
->  i  =  suc  j )
26 simp2 959 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  i  e.  n )
27133ad2ant3 981 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  n  e.  D )
283bnj923 29199 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  D  ->  n  e.  om )
29 elnn 4857 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( i  e.  n  /\  n  e.  om )  ->  i  e.  om )
3028, 29sylan2 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  n  /\  n  e.  D )  ->  i  e.  om )
3126, 27, 30syl2anc 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  i  e.  om )
3218, 31bnj832 29188 . . . . . . . . . . . . . . . . . 18  |-  ( th 
->  i  e.  om )
33 vex 2961 . . . . . . . . . . . . . . . . . . . 20  |-  j  e. 
_V
3433bnj216 29161 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  suc  j  -> 
j  e.  i )
35 elnn 4857 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  i  /\  i  e.  om )  ->  j  e.  om )
3634, 35sylan 459 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  =  suc  j  /\  i  e.  om )  ->  j  e.  om )
3725, 32, 36syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( th 
->  j  e.  om )
3818, 26bnj832 29188 . . . . . . . . . . . . . . . . . 18  |-  ( th 
->  i  e.  n
)
3925, 38eqeltrrd 2513 . . . . . . . . . . . . . . . . 17  |-  ( th 
->  suc  j  e.  n
)
402bnj589 29342 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ps  <->  A. j  e.  om  ( suc  j  e.  n  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) )
4140biimpi 188 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ps 
->  A. j  e.  om  ( suc  j  e.  n  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) )
4241bnj708 29186 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps )  ->  A. j  e.  om  ( suc  j  e.  n  ->  ( f `
 suc  j )  =  U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) )
43 rsp 2768 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. j  e.  om  ( suc  j  e.  n  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) )  -> 
( j  e.  om  ->  ( suc  j  e.  n  ->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) ) )
4442, 43syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps )  ->  (
j  e.  om  ->  ( suc  j  e.  n  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) ) )
457, 44sylbi 189 . . . . . . . . . . . . . . . . . . 19  |-  ( ch 
->  ( j  e.  om  ->  ( suc  j  e.  n  ->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) ) )
46453ad2ant3 981 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( j  e.  om  ->  ( suc  j  e.  n  ->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) ) )
4718, 46bnj832 29188 . . . . . . . . . . . . . . . . 17  |-  ( th 
->  ( j  e.  om  ->  ( suc  j  e.  n  ->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) ) )
4837, 39, 47mp2d 44 . . . . . . . . . . . . . . . 16  |-  ( th 
->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) )
49 fveq2 5730 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  suc  j  -> 
( f `  i
)  =  ( f `
 suc  j )
)
5049eqeq1d 2446 . . . . . . . . . . . . . . . . 17  |-  ( i  =  suc  j  -> 
( ( f `  i )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R )  <->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) )
5125, 50syl 16 . . . . . . . . . . . . . . . 16  |-  ( th 
->  ( ( f `  i )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R )  <->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) )
5248, 51mpbird 225 . . . . . . . . . . . . . . 15  |-  ( th 
->  ( f `  i
)  =  U_ y  e.  ( f `  j
)  pred ( y ,  A ,  R ) )
5323, 52bnj1262 29244 . . . . . . . . . . . . . 14  |-  ( th 
->  ( f `  i
)  C_  A )
5421, 53bnj1023 29213 . . . . . . . . . . . . 13  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  (
f `  i )  C_  A )
55 3anass 941 . . . . . . . . . . . . . . 15  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  <->  ( i  =/=  (/)  /\  (
i  e.  n  /\  ch ) ) )
5655imbi1i 317 . . . . . . . . . . . . . 14  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( f `  i
)  C_  A )  <->  ( ( i  =/=  (/)  /\  (
i  e.  n  /\  ch ) )  ->  (
f `  i )  C_  A ) )
5756exbii 1593 . . . . . . . . . . . . 13  |-  ( E. j ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( f `  i
)  C_  A )  <->  E. j ( ( i  =/=  (/)  /\  ( i  e.  n  /\  ch ) )  ->  (
f `  i )  C_  A ) )
5854, 57mpbi 201 . . . . . . . . . . . 12  |-  E. j
( ( i  =/=  (/)  /\  ( i  e.  n  /\  ch )
)  ->  ( f `  i )  C_  A
)
591biimpi 188 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
607, 59bnj771 29195 . . . . . . . . . . . . . 14  |-  ( ch 
->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
61 fveq2 5730 . . . . . . . . . . . . . . 15  |-  ( i  =  (/)  ->  ( f `
 i )  =  ( f `  (/) ) )
62 bnj213 29315 . . . . . . . . . . . . . . . 16  |-  pred ( X ,  A ,  R )  C_  A
63 sseq1 3371 . . . . . . . . . . . . . . . 16  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  ->  ( ( f `  (/) )  C_  A  <->  pred ( X ,  A ,  R
)  C_  A )
)
6462, 63mpbiri 226 . . . . . . . . . . . . . . 15  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  ->  ( f `  (/) )  C_  A )
65 sseq1 3371 . . . . . . . . . . . . . . . 16  |-  ( ( f `  i )  =  ( f `  (/) )  ->  ( (
f `  i )  C_  A  <->  ( f `  (/) )  C_  A )
)
6665biimpar 473 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  i
)  =  ( f `
 (/) )  /\  (
f `  (/) )  C_  A )  ->  (
f `  i )  C_  A )
6761, 64, 66syl2an 465 . . . . . . . . . . . . . 14  |-  ( ( i  =  (/)  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )
)  ->  ( f `  i )  C_  A
)
6860, 67sylan2 462 . . . . . . . . . . . . 13  |-  ( ( i  =  (/)  /\  ch )  ->  ( f `  i )  C_  A
)
6968adantrl 698 . . . . . . . . . . . 12  |-  ( ( i  =  (/)  /\  (
i  e.  n  /\  ch ) )  ->  (
f `  i )  C_  A )
7058, 69bnj1109 29219 . . . . . . . . . . 11  |-  E. j
( ( i  e.  n  /\  ch )  ->  ( f `  i
)  C_  A )
71 19.9v 1677 . . . . . . . . . . 11  |-  ( E. j ( ( i  e.  n  /\  ch )  ->  ( f `  i )  C_  A
)  <->  ( ( i  e.  n  /\  ch )  ->  ( f `  i )  C_  A
) )
7270, 71mpbi 201 . . . . . . . . . 10  |-  ( ( i  e.  n  /\  ch )  ->  ( f `
 i )  C_  A )
7372expcom 426 . . . . . . . . 9  |-  ( ch 
->  ( i  e.  n  ->  ( f `  i
)  C_  A )
)
74 fndm 5546 . . . . . . . . . . 11  |-  ( f  Fn  n  ->  dom  f  =  n )
757, 74bnj770 29194 . . . . . . . . . 10  |-  ( ch 
->  dom  f  =  n )
76 eleq2 2499 . . . . . . . . . . 11  |-  ( dom  f  =  n  -> 
( i  e.  dom  f 
<->  i  e.  n ) )
7776imbi1d 310 . . . . . . . . . 10  |-  ( dom  f  =  n  -> 
( ( i  e. 
dom  f  ->  (
f `  i )  C_  A )  <->  ( i  e.  n  ->  ( f `
 i )  C_  A ) ) )
7875, 77syl 16 . . . . . . . . 9  |-  ( ch 
->  ( ( i  e. 
dom  f  ->  (
f `  i )  C_  A )  <->  ( i  e.  n  ->  ( f `
 i )  C_  A ) ) )
7973, 78mpbird 225 . . . . . . . 8  |-  ( ch 
->  ( i  e.  dom  f  ->  ( f `  i )  C_  A
) )
8011, 79ralrimi 2789 . . . . . . 7  |-  ( ch 
->  A. i  e.  dom  f ( f `  i )  C_  A
)
8180exlimiv 1645 . . . . . 6  |-  ( E. n ch  ->  A. i  e.  dom  f ( f `
 i )  C_  A )
828, 81sylbi 189 . . . . 5  |-  ( f  e.  B  ->  A. i  e.  dom  f ( f `
 i )  C_  A )
83 ss2iun 4110 . . . . . 6  |-  ( A. i  e.  dom  f ( f `  i ) 
C_  A  ->  U_ i  e.  dom  f ( f `
 i )  C_  U_ i  e.  dom  f  A )
84 bnj1143 29223 . . . . . 6  |-  U_ i  e.  dom  f  A  C_  A
8583, 84syl6ss 3362 . . . . 5  |-  ( A. i  e.  dom  f ( f `  i ) 
C_  A  ->  U_ i  e.  dom  f ( f `
 i )  C_  A )
8682, 85syl 16 . . . 4  |-  ( f  e.  B  ->  U_ i  e.  dom  f ( f `
 i )  C_  A )
876, 86mprg 2777 . . 3  |-  U_ f  e.  B  U_ i  e. 
dom  f ( f `
 i )  C_  U_ f  e.  B  A
884bnj1317 29255 . . . 4  |-  ( w  e.  B  ->  A. f  w  e.  B )
8988bnj1146 29224 . . 3  |-  U_ f  e.  B  A  C_  A
9087, 89sstri 3359 . 2  |-  U_ f  e.  B  U_ i  e. 
dom  f ( f `
 i )  C_  A
915, 90eqsstri 3380 1  |-  trCl ( X ,  A ,  R )  C_  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2424    =/= wne 2601   A.wral 2707   E.wrex 2708    \ cdif 3319    C_ wss 3322   (/)c0 3630   {csn 3816   U_ciun 4095   suc csuc 4585   omcom 4847   dom cdm 4880    Fn wfn 5451   ` cfv 5456    /\ w-bnj17 29112    predc-bnj14 29114    trClc-bnj18 29120
This theorem is referenced by:  bnj1147  29425
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-tr 4305  df-eprel 4496  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-iota 5420  df-fn 5459  df-fv 5464  df-bnj17 29113  df-bnj14 29115  df-bnj18 29121
  Copyright terms: Public domain W3C validator