Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1148 Structured version   Unicode version

Theorem bnj1148 29463
 Description: Property of . (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1148

Proof of Theorem bnj1148
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elisset 2972 . . . . 5
21adantl 454 . . . 4
3 bnj93 29332 . . . . 5
4 eleq1 2502 . . . . . . 7
54anbi2d 686 . . . . . 6
6 bnj602 29384 . . . . . . 7
76eleq1d 2508 . . . . . 6
85, 7imbi12d 313 . . . . 5
93, 8mpbii 204 . . . 4
102, 9bnj593 29211 . . 3
1110bnj937 29240 . 2
1211pm2.43i 46 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wex 1551   wceq 1653   wcel 1727  cvv 2962   c-bnj14 29150   w-bnj15 29154 This theorem is referenced by:  bnj1136  29464  bnj1413  29502 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ral 2716  df-rab 2720  df-v 2964  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-br 4238  df-bnj14 29151  df-bnj13 29153  df-bnj15 29155
 Copyright terms: Public domain W3C validator