Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1154 Unicode version

Theorem bnj1154 29345
Description: Property of  Fr. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1154  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
Distinct variable groups:    x, A, y    x, B, y    x, R, y

Proof of Theorem bnj1154
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 bnj658 29096 . 2  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) ) )
2 elisset 2811 . . . . 5  |-  ( B  e.  _V  ->  E. b 
b  =  B )
32bnj708 29101 . . . 4  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  E. b 
b  =  B )
4 df-fr 4368 . . . . . . . 8  |-  ( R  Fr  A  <->  A. b
( ( b  C_  A  /\  b  =/=  (/) )  ->  E. x  e.  b  A. y  e.  b  -.  y R x ) )
54biimpi 186 . . . . . . 7  |-  ( R  Fr  A  ->  A. b
( ( b  C_  A  /\  b  =/=  (/) )  ->  E. x  e.  b  A. y  e.  b  -.  y R x ) )
6519.21bi 1806 . . . . . 6  |-  ( R  Fr  A  ->  (
( b  C_  A  /\  b  =/=  (/) )  ->  E. x  e.  b  A. y  e.  b  -.  y R x ) )
763impib 1149 . . . . 5  |-  ( ( R  Fr  A  /\  b  C_  A  /\  b  =/=  (/) )  ->  E. x  e.  b  A. y  e.  b  -.  y R x )
8 sseq1 3212 . . . . . . 7  |-  ( b  =  B  ->  (
b  C_  A  <->  B  C_  A
) )
9 neeq1 2467 . . . . . . 7  |-  ( b  =  B  ->  (
b  =/=  (/)  <->  B  =/=  (/) ) )
108, 93anbi23d 1255 . . . . . 6  |-  ( b  =  B  ->  (
( R  Fr  A  /\  b  C_  A  /\  b  =/=  (/) )  <->  ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) ) ) )
11 raleq 2749 . . . . . . 7  |-  ( b  =  B  ->  ( A. y  e.  b  -.  y R x  <->  A. y  e.  B  -.  y R x ) )
1211rexeqbi1dv 2758 . . . . . 6  |-  ( b  =  B  ->  ( E. x  e.  b  A. y  e.  b  -.  y R x  <->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
1310, 12imbi12d 311 . . . . 5  |-  ( b  =  B  ->  (
( ( R  Fr  A  /\  b  C_  A  /\  b  =/=  (/) )  ->  E. x  e.  b  A. y  e.  b  -.  y R x )  <-> 
( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) ) )
147, 13mpbii 202 . . . 4  |-  ( b  =  B  ->  (
( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
153, 14bnj593 29090 . . 3  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  E. b
( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
1615bnj937 29119 . 2  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  (
( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
171, 16mpd 14 1  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   (/)c0 3468   class class class wbr 4039    Fr wfr 4365    /\ w-bnj17 29027
This theorem is referenced by:  bnj1190  29354
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-v 2803  df-in 3172  df-ss 3179  df-fr 4368  df-bnj17 29028
  Copyright terms: Public domain W3C validator