Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1171 Structured version   Unicode version

Theorem bnj1171 29306
 Description: Technical lemma for bnj69 29316. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1171.13
bnj1171.129
Assertion
Ref Expression
bnj1171

Proof of Theorem bnj1171
StepHypRef Expression
1 bnj1171.129 . 2
2 bnj1171.13 . . . . . . . . . . 11
32sseld 3339 . . . . . . . . . 10
43pm4.71rd 617 . . . . . . . . 9
54imbi1d 309 . . . . . . . 8
6 impexp 434 . . . . . . . 8
75, 6syl6bb 253 . . . . . . 7
8 con2b 325 . . . . . . . 8
98imbi2i 304 . . . . . . 7
107, 9syl6bbr 255 . . . . . 6
1110anbi2d 685 . . . . 5
1211pm5.74i 237 . . . 4
1312albii 1575 . . 3
1413exbii 1592 . 2
151, 14mpbir 201 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 359  wal 1549  wex 1550   wcel 1725   wss 3312   class class class wbr 4204 This theorem is referenced by:  bnj1190  29314 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-in 3319  df-ss 3326
 Copyright terms: Public domain W3C validator