Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1177 Unicode version

Theorem bnj1177 29036
Description: Technical lemma for bnj69 29040. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1177.2  |-  ( ps  <->  ( X  e.  B  /\  y  e.  B  /\  y R X ) )
bnj1177.3  |-  C  =  (  trCl ( X ,  A ,  R )  i^i  B )
bnj1177.9  |-  ( (
ph  /\  ps )  ->  R  FrSe  A )
bnj1177.13  |-  ( (
ph  /\  ps )  ->  B  C_  A )
bnj1177.17  |-  ( (
ph  /\  ps )  ->  X  e.  A )
Assertion
Ref Expression
bnj1177  |-  ( (
ph  /\  ps )  ->  ( R  Fr  A  /\  C  C_  A  /\  C  =/=  (/)  /\  C  e. 
_V ) )

Proof of Theorem bnj1177
StepHypRef Expression
1 bnj1177.9 . . 3  |-  ( (
ph  /\  ps )  ->  R  FrSe  A )
2 df-bnj15 28718 . . . 4  |-  ( R 
FrSe  A  <->  ( R  Fr  A  /\  R  Se  A
) )
32simplbi 446 . . 3  |-  ( R 
FrSe  A  ->  R  Fr  A )
41, 3syl 15 . 2  |-  ( (
ph  /\  ps )  ->  R  Fr  A )
5 bnj1177.3 . . . 4  |-  C  =  (  trCl ( X ,  A ,  R )  i^i  B )
6 bnj1147 29024 . . . . 5  |-  trCl ( X ,  A ,  R )  C_  A
7 ssinss1 3397 . . . . 5  |-  (  trCl ( X ,  A ,  R )  C_  A  ->  (  trCl ( X ,  A ,  R )  i^i  B )  C_  A
)
86, 7ax-mp 8 . . . 4  |-  (  trCl ( X ,  A ,  R )  i^i  B
)  C_  A
95, 8eqsstri 3208 . . 3  |-  C  C_  A
109a1i 10 . 2  |-  ( (
ph  /\  ps )  ->  C  C_  A )
11 bnj1177.17 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  X  e.  A )
12 bnj906 28962 . . . . . . 7  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
)
131, 11, 12syl2anc 642 . . . . . 6  |-  ( (
ph  /\  ps )  ->  pred ( X ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
)
14 ssrin 3394 . . . . . 6  |-  (  pred ( X ,  A ,  R )  C_  trCl ( X ,  A ,  R )  ->  (  pred ( X ,  A ,  R )  i^i  B
)  C_  (  trCl ( X ,  A ,  R )  i^i  B
) )
1513, 14syl 15 . . . . 5  |-  ( (
ph  /\  ps )  ->  (  pred ( X ,  A ,  R )  i^i  B )  C_  (  trCl ( X ,  A ,  R )  i^i  B
) )
16 bnj1177.13 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  B  C_  A )
17 bnj1177.2 . . . . . . . . . 10  |-  ( ps  <->  ( X  e.  B  /\  y  e.  B  /\  y R X ) )
1817simp2bi 971 . . . . . . . . 9  |-  ( ps 
->  y  e.  B
)
1918adantl 452 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  y  e.  B )
2016, 19sseldd 3181 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  y  e.  A )
2117simp3bi 972 . . . . . . . 8  |-  ( ps 
->  y R X )
2221adantl 452 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  y R X )
23 bnj1152 29028 . . . . . . 7  |-  ( y  e.  pred ( X ,  A ,  R )  <->  ( y  e.  A  /\  y R X ) )
2420, 22, 23sylanbrc 645 . . . . . 6  |-  ( (
ph  /\  ps )  ->  y  e.  pred ( X ,  A ,  R ) )
2524, 19bnj1153 28825 . . . . 5  |-  ( (
ph  /\  ps )  ->  y  e.  (  pred ( X ,  A ,  R )  i^i  B
) )
2615, 25sseldd 3181 . . . 4  |-  ( (
ph  /\  ps )  ->  y  e.  (  trCl ( X ,  A ,  R )  i^i  B
) )
27 ne0i 3461 . . . 4  |-  ( y  e.  (  trCl ( X ,  A ,  R )  i^i  B
)  ->  (  trCl ( X ,  A ,  R )  i^i  B
)  =/=  (/) )
2826, 27syl 15 . . 3  |-  ( (
ph  /\  ps )  ->  (  trCl ( X ,  A ,  R )  i^i  B )  =/=  (/) )
295neeq1i 2456 . . 3  |-  ( C  =/=  (/)  <->  (  trCl ( X ,  A ,  R )  i^i  B
)  =/=  (/) )
3028, 29sylibr 203 . 2  |-  ( (
ph  /\  ps )  ->  C  =/=  (/) )
31 bnj893 28960 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  e.  _V )
321, 11, 31syl2anc 642 . . 3  |-  ( (
ph  /\  ps )  ->  trCl ( X ,  A ,  R )  e.  _V )
33 inex1g 4157 . . . 4  |-  (  trCl ( X ,  A ,  R )  e.  _V  ->  (  trCl ( X ,  A ,  R )  i^i  B )  e.  _V )
345, 33syl5eqel 2367 . . 3  |-  (  trCl ( X ,  A ,  R )  e.  _V  ->  C  e.  _V )
3532, 34syl 15 . 2  |-  ( (
ph  /\  ps )  ->  C  e.  _V )
364, 10, 30, 35bnj951 28807 1  |-  ( (
ph  /\  ps )  ->  ( R  Fr  A  /\  C  C_  A  /\  C  =/=  (/)  /\  C  e. 
_V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   class class class wbr 4023    Fr wfr 4349    /\ w-bnj17 28711    predc-bnj14 28713    Se w-bnj13 28715    FrSe w-bnj15 28717    trClc-bnj18 28719
This theorem is referenced by:  bnj1190  29038
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-reg 7306  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-bnj17 28712  df-bnj14 28714  df-bnj13 28716  df-bnj15 28718  df-bnj18 28720
  Copyright terms: Public domain W3C validator