Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1196 Unicode version

Theorem bnj1196 28827
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1196.1  |-  ( ph  ->  E. x  e.  A  ps )
Assertion
Ref Expression
bnj1196  |-  ( ph  ->  E. x ( x  e.  A  /\  ps ) )

Proof of Theorem bnj1196
StepHypRef Expression
1 bnj1196.1 . 2  |-  ( ph  ->  E. x  e.  A  ps )
2 df-rex 2549 . 2  |-  ( E. x  e.  A  ps  <->  E. x ( x  e.  A  /\  ps )
)
31, 2sylib 188 1  |-  ( ph  ->  E. x ( x  e.  A  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    e. wcel 1684   E.wrex 2544
This theorem is referenced by:  bnj1209  28829  bnj1265  28845  bnj1379  28863  bnj1521  28883  bnj900  28961  bnj986  28986  bnj1189  29039  bnj1245  29044  bnj1286  29049  bnj1311  29054  bnj1450  29080  bnj1498  29091
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-rex 2549
  Copyright terms: Public domain W3C validator