Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1198 Unicode version

Theorem bnj1198 28507
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1198.1  |-  ( ph  ->  E. x ps )
bnj1198.2  |-  ( ps'  <->  ps )
Assertion
Ref Expression
bnj1198  |-  ( ph  ->  E. x ps' )

Proof of Theorem bnj1198
StepHypRef Expression
1 bnj1198.1 . 2  |-  ( ph  ->  E. x ps )
2 bnj1198.2 . . 3  |-  ( ps'  <->  ps )
32exbii 1589 . 2  |-  ( E. x ps'  <->  E. x ps )
41, 3sylibr 204 1  |-  ( ph  ->  E. x ps' )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   E.wex 1547
This theorem is referenced by:  bnj1209  28508  bnj1275  28525  bnj1340  28535  bnj1345  28536  bnj605  28618  bnj607  28627  bnj906  28641  bnj908  28642  bnj1189  28718  bnj1450  28759  bnj1312  28767
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563
This theorem depends on definitions:  df-bi 178  df-ex 1548
  Copyright terms: Public domain W3C validator