Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1209 Unicode version

Theorem bnj1209 29145
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1209.1  |-  ( ch 
->  E. x  e.  B  ph )
bnj1209.2  |-  ( th  <->  ( ch  /\  x  e.  B  /\  ph )
)
Assertion
Ref Expression
bnj1209  |-  ( ch 
->  E. x th )
Distinct variable group:    ch, x
Allowed substitution hints:    ph( x)    th( x)    B( x)

Proof of Theorem bnj1209
StepHypRef Expression
1 bnj1209.1 . . . . 5  |-  ( ch 
->  E. x  e.  B  ph )
21bnj1196 29143 . . . 4  |-  ( ch 
->  E. x ( x  e.  B  /\  ph ) )
32ancli 534 . . 3  |-  ( ch 
->  ( ch  /\  E. x ( x  e.  B  /\  ph )
) )
4 19.42v 1858 . . 3  |-  ( E. x ( ch  /\  ( x  e.  B  /\  ph ) )  <->  ( ch  /\ 
E. x ( x  e.  B  /\  ph ) ) )
53, 4sylibr 203 . 2  |-  ( ch 
->  E. x ( ch 
/\  ( x  e.  B  /\  ph )
) )
6 bnj1209.2 . . 3  |-  ( th  <->  ( ch  /\  x  e.  B  /\  ph )
)
7 3anass 938 . . 3  |-  ( ( ch  /\  x  e.  B  /\  ph )  <->  ( ch  /\  ( x  e.  B  /\  ph ) ) )
86, 7bitri 240 . 2  |-  ( th  <->  ( ch  /\  ( x  e.  B  /\  ph ) ) )
95, 8bnj1198 29144 1  |-  ( ch 
->  E. x th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    e. wcel 1696   E.wrex 2557
This theorem is referenced by:  bnj1501  29413  bnj1523  29417
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-ex 1532  df-nf 1535  df-rex 2562
  Copyright terms: Public domain W3C validator