Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1209 Structured version   Unicode version

Theorem bnj1209 29105
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1209.1
bnj1209.2
Assertion
Ref Expression
bnj1209
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem bnj1209
StepHypRef Expression
1 bnj1209.1 . . . . 5
21bnj1196 29103 . . . 4
32ancli 535 . . 3
4 19.42v 1928 . . 3
53, 4sylibr 204 . 2
6 bnj1209.2 . . 3
7 3anass 940 . . 3
86, 7bitri 241 . 2
95, 8bnj1198 29104 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   w3a 936  wex 1550   wcel 1725  wrex 2698 This theorem is referenced by:  bnj1501  29373  bnj1523  29377 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-ex 1551  df-nf 1554  df-rex 2703
 Copyright terms: Public domain W3C validator