Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj121 Unicode version

Theorem bnj121 28579
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj121.1  |-  ( ze  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  n  /\  ph  /\  ps ) ) )
bnj121.2  |-  ( ze'  <->  [. 1o  /  n ]. ze )
bnj121.3  |-  ( ph'  <->  [. 1o  /  n ]. ph )
bnj121.4  |-  ( ps'  <->  [. 1o  /  n ]. ps )
Assertion
Ref Expression
bnj121  |-  ( ze'  <->  (
( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  1o  /\  ph'  /\  ps' ) ) )
Distinct variable groups:    A, n    R, n    f, n    x, n
Allowed substitution hints:    ph( x, f, n)    ps( x, f, n)    ze( x, f, n)    A( x, f)    R( x, f)    ph'( x, f, n)    ps'( x, f, n)    ze'( x, f, n)

Proof of Theorem bnj121
StepHypRef Expression
1 bnj121.1 . . 3  |-  ( ze  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  n  /\  ph  /\  ps ) ) )
21sbcbii 3159 . 2  |-  ( [. 1o  /  n ]. ze  <->  [. 1o  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  n  /\  ph  /\  ps ) ) )
3 bnj121.2 . 2  |-  ( ze'  <->  [. 1o  /  n ]. ze )
4 bnj105 28427 . . . . . . . 8  |-  1o  e.  _V
54bnj90 28425 . . . . . . 7  |-  ( [. 1o  /  n ]. f  Fn  n  <->  f  Fn  1o )
65bicomi 194 . . . . . 6  |-  ( f  Fn  1o  <->  [. 1o  /  n ]. f  Fn  n
)
7 bnj121.3 . . . . . 6  |-  ( ph'  <->  [. 1o  /  n ]. ph )
8 bnj121.4 . . . . . 6  |-  ( ps'  <->  [. 1o  /  n ]. ps )
96, 7, 83anbi123i 1142 . . . . 5  |-  ( ( f  Fn  1o  /\  ph' 
/\  ps' )  <->  ( [. 1o  /  n ]. f  Fn  n  /\  [. 1o  /  n ]. ph  /\  [. 1o  /  n ]. ps ) )
10 sbc3ang 3162 . . . . . 6  |-  ( 1o  e.  _V  ->  ( [. 1o  /  n ]. ( f  Fn  n  /\  ph  /\  ps )  <->  (
[. 1o  /  n ]. f  Fn  n  /\  [. 1o  /  n ]. ph  /\  [. 1o  /  n ]. ps )
) )
114, 10ax-mp 8 . . . . 5  |-  ( [. 1o  /  n ]. (
f  Fn  n  /\  ph 
/\  ps )  <->  ( [. 1o  /  n ]. f  Fn  n  /\  [. 1o  /  n ]. ph  /\  [. 1o  /  n ]. ps ) )
129, 11bitr4i 244 . . . 4  |-  ( ( f  Fn  1o  /\  ph' 
/\  ps' )  <->  [. 1o  /  n ]. ( f  Fn  n  /\  ph  /\  ps ) )
1312imbi2i 304 . . 3  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  1o  /\  ph'  /\  ps' ) )  <-> 
( ( R  FrSe  A  /\  x  e.  A
)  ->  [. 1o  /  n ]. ( f  Fn  n  /\  ph  /\  ps ) ) )
14 nfv 1626 . . . . 5  |-  F/ n
( R  FrSe  A  /\  x  e.  A
)
1514sbc19.21g 3168 . . . 4  |-  ( 1o  e.  _V  ->  ( [. 1o  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  n  /\  ph  /\  ps ) )  <->  ( ( R  FrSe  A  /\  x  e.  A )  ->  [. 1o  /  n ]. ( f  Fn  n  /\  ph  /\ 
ps ) ) ) )
164, 15ax-mp 8 . . 3  |-  ( [. 1o  /  n ]. (
( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  n  /\  ph  /\  ps ) )  <->  ( ( R  FrSe  A  /\  x  e.  A )  ->  [. 1o  /  n ]. ( f  Fn  n  /\  ph  /\ 
ps ) ) )
1713, 16bitr4i 244 . 2  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  1o  /\  ph'  /\  ps' ) )  <->  [. 1o  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  n  /\  ph  /\  ps ) ) )
182, 3, 173bitr4i 269 1  |-  ( ze'  <->  (
( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  1o  /\  ph'  /\  ps' ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1717   _Vcvv 2899   [.wsbc 3104    Fn wfn 5389   1oc1o 6653    FrSe w-bnj15 28394
This theorem is referenced by:  bnj150  28585  bnj153  28589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-pw 3744  df-sn 3763  df-suc 4528  df-fn 5397  df-1o 6660
  Copyright terms: Public domain W3C validator