Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1232 Unicode version

Theorem bnj1232 28893
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1232.1  |-  ( ph  <->  ( ps  /\  ch  /\  th 
/\  ta ) )
Assertion
Ref Expression
bnj1232  |-  ( ph  ->  ps )

Proof of Theorem bnj1232
StepHypRef Expression
1 bnj1232.1 . 2  |-  ( ph  <->  ( ps  /\  ch  /\  th 
/\  ta ) )
2 bnj642 28834 . 2  |-  ( ( ps  /\  ch  /\  th 
/\  ta )  ->  ps )
31, 2sylbi 188 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w-bnj17 28768
This theorem is referenced by:  bnj605  28996  bnj607  29005  bnj944  29027  bnj969  29035  bnj970  29036  bnj1001  29047  bnj1110  29069  bnj1118  29071  bnj1128  29077  bnj1145  29080  bnj1311  29111
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-bnj17 28769
  Copyright terms: Public domain W3C validator