Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1234 Unicode version

Theorem bnj1234 29359
Description: Technical lemma for bnj60 29408. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1234.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1234.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1234.4  |-  Z  = 
<. x ,  ( g  |`  pred ( x ,  A ,  R ) ) >.
bnj1234.5  |-  D  =  { g  |  E. d  e.  B  (
g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  Z ) ) }
Assertion
Ref Expression
bnj1234  |-  C  =  D
Distinct variable groups:    B, f,
g    f, G, g    g, Y    f, Z    f, d,
g    x, f, g
Allowed substitution hints:    A( x, f, g, d)    B( x, d)    C( x, f, g, d)    D( x, f, g, d)    R( x, f, g, d)    G( x, d)    Y( x, f, d)    Z( x, g, d)

Proof of Theorem bnj1234
StepHypRef Expression
1 fneq1 5349 . . . . 5  |-  ( f  =  g  ->  (
f  Fn  d  <->  g  Fn  d ) )
2 fveq1 5540 . . . . . . 7  |-  ( f  =  g  ->  (
f `  x )  =  ( g `  x ) )
3 reseq1 4965 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f  |`  pred ( x ,  A ,  R ) )  =  ( g  |`  pred ( x ,  A ,  R ) ) )
43opeq2d 3819 . . . . . . . . 9  |-  ( f  =  g  ->  <. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.  =  <. x ,  ( g  |`  pred ( x ,  A ,  R
) ) >. )
5 bnj1234.2 . . . . . . . . 9  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
6 bnj1234.4 . . . . . . . . 9  |-  Z  = 
<. x ,  ( g  |`  pred ( x ,  A ,  R ) ) >.
74, 5, 63eqtr4g 2353 . . . . . . . 8  |-  ( f  =  g  ->  Y  =  Z )
87fveq2d 5545 . . . . . . 7  |-  ( f  =  g  ->  ( G `  Y )  =  ( G `  Z ) )
92, 8eqeq12d 2310 . . . . . 6  |-  ( f  =  g  ->  (
( f `  x
)  =  ( G `
 Y )  <->  ( g `  x )  =  ( G `  Z ) ) )
109ralbidv 2576 . . . . 5  |-  ( f  =  g  ->  ( A. x  e.  d 
( f `  x
)  =  ( G `
 Y )  <->  A. x  e.  d  ( g `  x )  =  ( G `  Z ) ) )
111, 10anbi12d 691 . . . 4  |-  ( f  =  g  ->  (
( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) )  <-> 
( g  Fn  d  /\  A. x  e.  d  ( g `  x
)  =  ( G `
 Z ) ) ) )
1211rexbidv 2577 . . 3  |-  ( f  =  g  ->  ( E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) )  <->  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x
)  =  ( G `
 Z ) ) ) )
1312cbvabv 2415 . 2  |-  { f  |  E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }  =  {
g  |  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  Z ) ) }
14 bnj1234.3 . 2  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
15 bnj1234.5 . 2  |-  D  =  { g  |  E. d  e.  B  (
g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  Z ) ) }
1613, 14, 153eqtr4i 2326 1  |-  C  =  D
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1632   {cab 2282   A.wral 2556   E.wrex 2557   <.cop 3656    |` cres 4707    Fn wfn 5266   ` cfv 5271    predc-bnj14 29029
This theorem is referenced by:  bnj1245  29360  bnj1256  29361  bnj1259  29362  bnj1296  29367  bnj1311  29370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-res 4717  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279
  Copyright terms: Public domain W3C validator