Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1238 Structured version   Unicode version

Theorem bnj1238 29115
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1238.1  |-  ( ph  <->  E. x  e.  A  ( ps  /\  ch )
)
Assertion
Ref Expression
bnj1238  |-  ( ph  ->  E. x  e.  A  ps )

Proof of Theorem bnj1238
StepHypRef Expression
1 bnj1238.1 . 2  |-  ( ph  <->  E. x  e.  A  ( ps  /\  ch )
)
2 bnj1239 29114 . 2  |-  ( E. x  e.  A  ( ps  /\  ch )  ->  E. x  e.  A  ps )
31, 2sylbi 188 1  |-  ( ph  ->  E. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wrex 2698
This theorem is referenced by:  bnj1245  29320  bnj1256  29321  bnj1259  29322  bnj1311  29330  bnj1371  29335
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-ral 2702  df-rex 2703
  Copyright terms: Public domain W3C validator