Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1241 Structured version   Unicode version

Theorem bnj1241 29106
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1241.1  |-  ( ph  ->  A  C_  B )
bnj1241.2  |-  ( ps 
->  C  =  A
)
Assertion
Ref Expression
bnj1241  |-  ( (
ph  /\  ps )  ->  C  C_  B )

Proof of Theorem bnj1241
StepHypRef Expression
1 bnj1241.2 . . . 4  |-  ( ps 
->  C  =  A
)
21eqcomd 2440 . . 3  |-  ( ps 
->  A  =  C
)
32adantl 453 . 2  |-  ( (
ph  /\  ps )  ->  A  =  C )
4 bnj1241.1 . . 3  |-  ( ph  ->  A  C_  B )
54adantr 452 . 2  |-  ( (
ph  /\  ps )  ->  A  C_  B )
63, 5eqsstr3d 3375 1  |-  ( (
ph  /\  ps )  ->  C  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    C_ wss 3312
This theorem is referenced by:  bnj1245  29310  bnj1311  29320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-in 3319  df-ss 3326
  Copyright terms: Public domain W3C validator