Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj125 Structured version   Unicode version

Theorem bnj125 29181
 Description: Technical lemma for bnj150 29185. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj125.1
bnj125.2
bnj125.3
bnj125.4
Assertion
Ref Expression
bnj125
Distinct variable groups:   ,,   ,   ,,   ,,
Allowed substitution hints:   (,,)   ()   ()   (,)   (,,)   (,,)

Proof of Theorem bnj125
StepHypRef Expression
1 bnj125.3 . 2
2 bnj125.2 . . . 4
32sbcbii 3209 . . 3
4 bnj125.1 . . . . . 6
5 bnj105 29027 . . . . . 6
64, 5bnj91 29170 . . . . 5
76sbcbii 3209 . . . 4
8 bnj125.4 . . . . . 6
98bnj95 29173 . . . . 5
10 fveq1 5720 . . . . . 6
1110eqeq1d 2444 . . . . 5
129, 11sbcie 3188 . . . 4
137, 12bitri 241 . . 3
143, 13bitri 241 . 2
151, 14bitri 241 1
 Colors of variables: wff set class Syntax hints:   wb 177   wceq 1652  wsbc 3154  c0 3621  csn 3807  cop 3810  cfv 5447  c1o 6710   c-bnj14 28990 This theorem is referenced by:  bnj150  29185  bnj153  29189 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rex 2704  df-v 2951  df-sbc 3155  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-pw 3794  df-sn 3813  df-pr 3814  df-uni 4009  df-br 4206  df-suc 4580  df-iota 5411  df-fv 5455  df-1o 6717
 Copyright terms: Public domain W3C validator