Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1254 Structured version   Unicode version

Theorem bnj1254 29181
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1254.1  |-  ( ph  <->  ( ps  /\  ch  /\  th 
/\  ta ) )
Assertion
Ref Expression
bnj1254  |-  ( ph  ->  ta )

Proof of Theorem bnj1254
StepHypRef Expression
1 bnj1254.1 . 2  |-  ( ph  <->  ( ps  /\  ch  /\  th 
/\  ta ) )
2 id 20 . . 3  |-  ( ta 
->  ta )
32bnj708 29124 . 2  |-  ( ( ps  /\  ch  /\  th 
/\  ta )  ->  ta )
41, 3sylbi 188 1  |-  ( ph  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w-bnj17 29050
This theorem is referenced by:  bnj554  29270  bnj557  29272  bnj967  29316  bnj999  29328  bnj907  29336  bnj1118  29353  bnj1128  29359  bnj1253  29386  bnj1450  29419
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-bnj17 29051
  Copyright terms: Public domain W3C validator