Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj126 Structured version   Unicode version

Theorem bnj126 29181
 Description: Technical lemma for bnj150 29184. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj126.1
bnj126.2
bnj126.3
bnj126.4
Assertion
Ref Expression
bnj126
Distinct variable groups:   ,,   ,,,   ,,   ,,
Allowed substitution hints:   (,,,,)   (,,)   (,,)   (,)   (,,,,)   (,,,,)

Proof of Theorem bnj126
StepHypRef Expression
1 bnj126.3 . 2
2 bnj126.2 . . 3
32sbcbii 3208 . 2
4 bnj126.1 . . 3
5 bnj126.4 . . . 4
65bnj95 29172 . . 3
74, 6bnj106 29176 . 2
81, 3, 73bitri 263 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wcel 1725  wral 2697  wsbc 3153  c0 3620  csn 3806  cop 3809  ciun 4085   csuc 4575  com 4837  cfv 5446  c1o 6709   c-bnj14 28989 This theorem is referenced by:  bnj150  29184  bnj153  29188 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-pw 3793  df-sn 3812  df-pr 3813  df-uni 4008  df-iun 4087  df-br 4205  df-suc 4579  df-iota 5410  df-fv 5454  df-1o 6716
 Copyright terms: Public domain W3C validator