Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj126 Unicode version

Theorem bnj126 28905
Description: Technical lemma for bnj150 28908. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj126.1  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj126.2  |-  ( ps'  <->  [. 1o  /  n ]. ps )
bnj126.3  |-  ( ps"  <->  [. F  / 
f ]. ps' )
bnj126.4  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
Assertion
Ref Expression
bnj126  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )
Distinct variable groups:    A, f, n    f, F, i, y    R, f, n    i, n, y
Allowed substitution hints:    ps( x, y, f, i, n)    A( x, y, i)    R( x, y, i)    F( x, n)    ps'( x, y, f, i, n)    ps"( x, y, f, i, n)

Proof of Theorem bnj126
StepHypRef Expression
1 bnj126.3 . 2  |-  ( ps"  <->  [. F  / 
f ]. ps' )
2 bnj126.2 . . 3  |-  ( ps'  <->  [. 1o  /  n ]. ps )
3 bnj126.4 . . . 4  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
43bnj95 28896 . . 3  |-  F  e. 
_V
52, 4bnj524 28766 . 2  |-  ( [. F  /  f ]. ps'  <->  [. F  / 
f ]. [. 1o  /  n ]. ps )
6 bnj126.1 . . 3  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
76, 4bnj106 28900 . 2  |-  ( [. F  /  f ]. [. 1o  /  n ]. ps  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )
81, 5, 73bitri 262 1  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   A.wral 2543   [.wsbc 2991   (/)c0 3455   {csn 3640   <.cop 3643   U_ciun 3905   suc csuc 4394   omcom 4656   ` cfv 5255   1oc1o 6472    predc-bnj14 28713
This theorem is referenced by:  bnj150  28908  bnj153  28912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-pw 3627  df-sn 3646  df-pr 3647  df-uni 3828  df-iun 3907  df-br 4024  df-suc 4398  df-iota 5219  df-fv 5263  df-1o 6479
  Copyright terms: Public domain W3C validator