Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1262 Unicode version

Theorem bnj1262 28843
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1262.1  |-  A  C_  B
bnj1262.2  |-  ( ph  ->  C  =  A )
Assertion
Ref Expression
bnj1262  |-  ( ph  ->  C  C_  B )

Proof of Theorem bnj1262
StepHypRef Expression
1 bnj1262.2 . 2  |-  ( ph  ->  C  =  A )
2 bnj1262.1 . . 3  |-  A  C_  B
32a1i 10 . 2  |-  ( ph  ->  A  C_  B )
41, 3eqsstrd 3212 1  |-  ( ph  ->  C  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    C_ wss 3152
This theorem is referenced by:  bnj229  28916  bnj1128  29020  bnj1145  29023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator