Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1275 Unicode version

Theorem bnj1275 28608
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1275.1  |-  ( ph  ->  E. x ( ps 
/\  ch ) )
bnj1275.2  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
bnj1275  |-  ( ph  ->  E. x ( ph  /\ 
ps  /\  ch )
)

Proof of Theorem bnj1275
StepHypRef Expression
1 bnj1275.2 . . 3  |-  ( ph  ->  A. x ph )
2 bnj1275.1 . . 3  |-  ( ph  ->  E. x ( ps 
/\  ch ) )
31, 2bnj596 28537 . 2  |-  ( ph  ->  E. x ( ph  /\  ( ps  /\  ch ) ) )
4 3anass 938 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ph  /\  ( ps  /\  ch ) ) )
53, 4bnj1198 28590 1  |-  ( ph  ->  E. x ( ph  /\ 
ps  /\  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1540   E.wex 1541
This theorem is referenced by:  bnj1345  28619  bnj1279  28810
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-ex 1542  df-nf 1545
  Copyright terms: Public domain W3C validator