Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1280 Unicode version

Theorem bnj1280 29366
Description: Technical lemma for bnj60 29408. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1280.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1280.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1280.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1280.4  |-  D  =  ( dom  g  i^i 
dom  h )
bnj1280.5  |-  E  =  { x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }
bnj1280.6  |-  ( ph  <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )
bnj1280.7  |-  ( ps  <->  (
ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )
bnj1280.17  |-  ( ps 
->  (  pred ( x ,  A ,  R
)  i^i  E )  =  (/) )
Assertion
Ref Expression
bnj1280  |-  ( ps 
->  ( g  |`  pred (
x ,  A ,  R ) )  =  ( h  |`  pred (
x ,  A ,  R ) ) )
Distinct variable groups:    A, d,
f    B, f, g    B, h, f    D, d, x   
f, G, g    h, G    R, d, f    g, Y    h, Y    g, d    x, f, g    h, d, x
Allowed substitution hints:    ph( x, y, f, g, h, d)    ps( x, y, f, g, h, d)    A( x, y, g, h)    B( x, y, d)    C( x, y, f, g, h, d)    D( y, f, g, h)    R( x, y, g, h)    E( x, y, f, g, h, d)    G( x, y, d)    Y( x, y, f, d)

Proof of Theorem bnj1280
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bnj1280.1 . . . . . . . 8  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
2 bnj1280.2 . . . . . . . 8  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
3 bnj1280.3 . . . . . . . 8  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
4 bnj1280.4 . . . . . . . 8  |-  D  =  ( dom  g  i^i 
dom  h )
5 bnj1280.5 . . . . . . . 8  |-  E  =  { x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }
6 bnj1280.6 . . . . . . . 8  |-  ( ph  <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )
7 bnj1280.7 . . . . . . . 8  |-  ( ps  <->  (
ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )
81, 2, 3, 4, 5, 6, 7bnj1286 29365 . . . . . . 7  |-  ( ps 
->  pred ( x ,  A ,  R ) 
C_  D )
98sseld 3192 . . . . . 6  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  z  e.  D ) )
10 bnj1280.17 . . . . . . . . 9  |-  ( ps 
->  (  pred ( x ,  A ,  R
)  i^i  E )  =  (/) )
11 disj1 3510 . . . . . . . . 9  |-  ( ( 
pred ( x ,  A ,  R )  i^i  E )  =  (/) 
<-> 
A. z ( z  e.  pred ( x ,  A ,  R )  ->  -.  z  e.  E ) )
1210, 11sylib 188 . . . . . . . 8  |-  ( ps 
->  A. z ( z  e.  pred ( x ,  A ,  R )  ->  -.  z  e.  E ) )
131219.21bi 1806 . . . . . . 7  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  -.  z  e.  E )
)
14 fveq2 5541 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
g `  x )  =  ( g `  z ) )
15 fveq2 5541 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
h `  x )  =  ( h `  z ) )
1614, 15neeq12d 2474 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( g `  x
)  =/=  ( h `
 x )  <->  ( g `  z )  =/=  (
h `  z )
) )
1716, 5elrab2 2938 . . . . . . . . 9  |-  ( z  e.  E  <->  ( z  e.  D  /\  (
g `  z )  =/=  ( h `  z
) ) )
1817notbii 287 . . . . . . . 8  |-  ( -.  z  e.  E  <->  -.  (
z  e.  D  /\  ( g `  z
)  =/=  ( h `
 z ) ) )
19 imnan 411 . . . . . . . 8  |-  ( ( z  e.  D  ->  -.  ( g `  z
)  =/=  ( h `
 z ) )  <->  -.  ( z  e.  D  /\  ( g `  z
)  =/=  ( h `
 z ) ) )
20 nne 2463 . . . . . . . . 9  |-  ( -.  ( g `  z
)  =/=  ( h `
 z )  <->  ( g `  z )  =  ( h `  z ) )
2120imbi2i 303 . . . . . . . 8  |-  ( ( z  e.  D  ->  -.  ( g `  z
)  =/=  ( h `
 z ) )  <-> 
( z  e.  D  ->  ( g `  z
)  =  ( h `
 z ) ) )
2218, 19, 213bitr2i 264 . . . . . . 7  |-  ( -.  z  e.  E  <->  ( z  e.  D  ->  ( g `
 z )  =  ( h `  z
) ) )
2313, 22syl6ib 217 . . . . . 6  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  (
z  e.  D  -> 
( g `  z
)  =  ( h `
 z ) ) ) )
249, 23mpdd 36 . . . . 5  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  (
g `  z )  =  ( h `  z ) ) )
2524imp 418 . . . 4  |-  ( ( ps  /\  z  e. 
pred ( x ,  A ,  R ) )  ->  ( g `  z )  =  ( h `  z ) )
26 fvres 5558 . . . . . 6  |-  ( z  e.  D  ->  (
( g  |`  D ) `
 z )  =  ( g `  z
) )
279, 26syl6 29 . . . . 5  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  (
( g  |`  D ) `
 z )  =  ( g `  z
) ) )
2827imp 418 . . . 4  |-  ( ( ps  /\  z  e. 
pred ( x ,  A ,  R ) )  ->  ( (
g  |`  D ) `  z )  =  ( g `  z ) )
29 fvres 5558 . . . . . 6  |-  ( z  e.  D  ->  (
( h  |`  D ) `
 z )  =  ( h `  z
) )
309, 29syl6 29 . . . . 5  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  (
( h  |`  D ) `
 z )  =  ( h `  z
) ) )
3130imp 418 . . . 4  |-  ( ( ps  /\  z  e. 
pred ( x ,  A ,  R ) )  ->  ( (
h  |`  D ) `  z )  =  ( h `  z ) )
3225, 28, 313eqtr4d 2338 . . 3  |-  ( ( ps  /\  z  e. 
pred ( x ,  A ,  R ) )  ->  ( (
g  |`  D ) `  z )  =  ( ( h  |`  D ) `
 z ) )
3332ralrimiva 2639 . 2  |-  ( ps 
->  A. z  e.  pred  ( x ,  A ,  R ) ( ( g  |`  D ) `  z )  =  ( ( h  |`  D ) `
 z ) )
34 resabs1 5000 . . . . 5  |-  (  pred ( x ,  A ,  R )  C_  D  ->  ( ( g  |`  D )  |`  pred (
x ,  A ,  R ) )  =  ( g  |`  pred (
x ,  A ,  R ) ) )
358, 34syl 15 . . . 4  |-  ( ps 
->  ( ( g  |`  D )  |`  pred (
x ,  A ,  R ) )  =  ( g  |`  pred (
x ,  A ,  R ) ) )
36 resabs1 5000 . . . . 5  |-  (  pred ( x ,  A ,  R )  C_  D  ->  ( ( h  |`  D )  |`  pred (
x ,  A ,  R ) )  =  ( h  |`  pred (
x ,  A ,  R ) ) )
378, 36syl 15 . . . 4  |-  ( ps 
->  ( ( h  |`  D )  |`  pred (
x ,  A ,  R ) )  =  ( h  |`  pred (
x ,  A ,  R ) ) )
3835, 37eqeq12d 2310 . . 3  |-  ( ps 
->  ( ( ( g  |`  D )  |`  pred (
x ,  A ,  R ) )  =  ( ( h  |`  D )  |`  pred (
x ,  A ,  R ) )  <->  ( g  |` 
pred ( x ,  A ,  R ) )  =  ( h  |`  pred ( x ,  A ,  R ) ) ) )
391, 2, 3, 4, 5, 6, 7bnj1256 29361 . . . . . . 7  |-  ( ph  ->  E. d  e.  B  g  Fn  d )
404bnj1292 29164 . . . . . . . . 9  |-  D  C_  dom  g
41 fndm 5359 . . . . . . . . 9  |-  ( g  Fn  d  ->  dom  g  =  d )
4240, 41syl5sseq 3239 . . . . . . . 8  |-  ( g  Fn  d  ->  D  C_  d )
43 fnssres 5373 . . . . . . . 8  |-  ( ( g  Fn  d  /\  D  C_  d )  -> 
( g  |`  D )  Fn  D )
4442, 43mpdan 649 . . . . . . 7  |-  ( g  Fn  d  ->  (
g  |`  D )  Fn  D )
4539, 44bnj31 29061 . . . . . 6  |-  ( ph  ->  E. d  e.  B  ( g  |`  D )  Fn  D )
4645bnj1265 29161 . . . . 5  |-  ( ph  ->  ( g  |`  D )  Fn  D )
477, 46bnj835 29105 . . . 4  |-  ( ps 
->  ( g  |`  D )  Fn  D )
481, 2, 3, 4, 5, 6, 7bnj1259 29362 . . . . . . 7  |-  ( ph  ->  E. d  e.  B  h  Fn  d )
494bnj1293 29165 . . . . . . . . 9  |-  D  C_  dom  h
50 fndm 5359 . . . . . . . . 9  |-  ( h  Fn  d  ->  dom  h  =  d )
5149, 50syl5sseq 3239 . . . . . . . 8  |-  ( h  Fn  d  ->  D  C_  d )
52 fnssres 5373 . . . . . . . 8  |-  ( ( h  Fn  d  /\  D  C_  d )  -> 
( h  |`  D )  Fn  D )
5351, 52mpdan 649 . . . . . . 7  |-  ( h  Fn  d  ->  (
h  |`  D )  Fn  D )
5448, 53bnj31 29061 . . . . . 6  |-  ( ph  ->  E. d  e.  B  ( h  |`  D )  Fn  D )
5554bnj1265 29161 . . . . 5  |-  ( ph  ->  ( h  |`  D )  Fn  D )
567, 55bnj835 29105 . . . 4  |-  ( ps 
->  ( h  |`  D )  Fn  D )
57 fvreseq 5644 . . . 4  |-  ( ( ( ( g  |`  D )  Fn  D  /\  ( h  |`  D )  Fn  D )  /\  pred ( x ,  A ,  R )  C_  D
)  ->  ( (
( g  |`  D )  |`  pred ( x ,  A ,  R ) )  =  ( ( h  |`  D )  |` 
pred ( x ,  A ,  R ) )  <->  A. z  e.  pred  ( x ,  A ,  R ) ( ( g  |`  D ) `  z )  =  ( ( h  |`  D ) `
 z ) ) )
5847, 56, 8, 57syl21anc 1181 . . 3  |-  ( ps 
->  ( ( ( g  |`  D )  |`  pred (
x ,  A ,  R ) )  =  ( ( h  |`  D )  |`  pred (
x ,  A ,  R ) )  <->  A. z  e.  pred  ( x ,  A ,  R ) ( ( g  |`  D ) `  z
)  =  ( ( h  |`  D ) `  z ) ) )
5938, 58bitr3d 246 . 2  |-  ( ps 
->  ( ( g  |`  pred ( x ,  A ,  R ) )  =  ( h  |`  pred (
x ,  A ,  R ) )  <->  A. z  e.  pred  ( x ,  A ,  R ) ( ( g  |`  D ) `  z
)  =  ( ( h  |`  D ) `  z ) ) )
6033, 59mpbird 223 1  |-  ( ps 
->  ( g  |`  pred (
x ,  A ,  R ) )  =  ( h  |`  pred (
x ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1530    = wceq 1632    e. wcel 1696   {cab 2282    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560    i^i cin 3164    C_ wss 3165   (/)c0 3468   <.cop 3656   class class class wbr 4039   dom cdm 4705    |` cres 4707    Fn wfn 5266   ` cfv 5271    /\ w-bnj17 29027    predc-bnj14 29029    FrSe w-bnj15 29033
This theorem is referenced by:  bnj1311  29370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279  df-bnj17 29028
  Copyright terms: Public domain W3C validator