Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1294 Structured version   Unicode version

Theorem bnj1294 29116
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1294.1  |-  ( ph  ->  A. x  e.  A  ps )
bnj1294.2  |-  ( ph  ->  x  e.  A )
Assertion
Ref Expression
bnj1294  |-  ( ph  ->  ps )

Proof of Theorem bnj1294
StepHypRef Expression
1 bnj1294.2 . 2  |-  ( ph  ->  x  e.  A )
2 bnj1294.1 . 2  |-  ( ph  ->  A. x  e.  A  ps )
3 df-ral 2702 . . 3  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
4 sp 1763 . . . 4  |-  ( A. x ( x  e.  A  ->  ps )  ->  ( x  e.  A  ->  ps ) )
54impcom 420 . . 3  |-  ( ( x  e.  A  /\  A. x ( x  e.  A  ->  ps )
)  ->  ps )
63, 5sylan2b 462 . 2  |-  ( ( x  e.  A  /\  A. x  e.  A  ps )  ->  ps )
71, 2, 6syl2anc 643 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1549    e. wcel 1725   A.wral 2697
This theorem is referenced by:  bnj1379  29129  bnj1121  29281  bnj1279  29314  bnj1286  29315  bnj1296  29317  bnj1421  29338  bnj1450  29346  bnj1489  29352  bnj1501  29363  bnj1523  29367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-ral 2702
  Copyright terms: Public domain W3C validator