Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj130 Unicode version

Theorem bnj130 28906
Description: Technical lemma for bnj151 28909. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj130.1  |-  ( th  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
bnj130.2  |-  ( ph'  <->  [. 1o  /  n ]. ph )
bnj130.3  |-  ( ps'  <->  [. 1o  /  n ]. ps )
bnj130.4  |-  ( th'  <->  [. 1o  /  n ]. th )
Assertion
Ref Expression
bnj130  |-  ( th'  <->  ( ( R  FrSe  A  /\  x  e.  A )  ->  E! f ( f  Fn  1o  /\  ph'  /\  ps' ) ) )
Distinct variable groups:    A, n    R, n    f, n    x, n
Allowed substitution hints:    ph( x, f, n)    ps( x, f, n)    th( x, f, n)    A( x, f)    R( x, f)    ph'( x, f, n)    ps'( x, f, n)    th'( x, f, n)

Proof of Theorem bnj130
StepHypRef Expression
1 bnj130.1 . . 3  |-  ( th  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
2 bnj105 28750 . . 3  |-  1o  e.  _V
31, 2bnj524 28766 . 2  |-  ( [. 1o  /  n ]. th  <->  [. 1o  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
4 bnj130.4 . 2  |-  ( th'  <->  [. 1o  /  n ]. th )
52bnj90 28748 . . . . . . . . 9  |-  ( [. 1o  /  n ]. f  Fn  n  <->  f  Fn  1o )
65bicomi 193 . . . . . . . 8  |-  ( f  Fn  1o  <->  [. 1o  /  n ]. f  Fn  n
)
7 bnj130.2 . . . . . . . 8  |-  ( ph'  <->  [. 1o  /  n ]. ph )
8 bnj130.3 . . . . . . . 8  |-  ( ps'  <->  [. 1o  /  n ]. ps )
96, 7, 83anbi123i 1140 . . . . . . 7  |-  ( ( f  Fn  1o  /\  ph' 
/\  ps' )  <->  ( [. 1o  /  n ]. f  Fn  n  /\  [. 1o  /  n ]. ph  /\  [. 1o  /  n ]. ps ) )
10 sbc3ang 3049 . . . . . . . 8  |-  ( 1o  e.  _V  ->  ( [. 1o  /  n ]. ( f  Fn  n  /\  ph  /\  ps )  <->  (
[. 1o  /  n ]. f  Fn  n  /\  [. 1o  /  n ]. ph  /\  [. 1o  /  n ]. ps )
) )
112, 10ax-mp 8 . . . . . . 7  |-  ( [. 1o  /  n ]. (
f  Fn  n  /\  ph 
/\  ps )  <->  ( [. 1o  /  n ]. f  Fn  n  /\  [. 1o  /  n ]. ph  /\  [. 1o  /  n ]. ps ) )
129, 11bitr4i 243 . . . . . 6  |-  ( ( f  Fn  1o  /\  ph' 
/\  ps' )  <->  [. 1o  /  n ]. ( f  Fn  n  /\  ph  /\  ps ) )
1312eubii 2152 . . . . 5  |-  ( E! f ( f  Fn  1o  /\  ph'  /\  ps' )  <->  E! f [. 1o  /  n ]. ( f  Fn  n  /\  ph  /\  ps )
)
142bnj89 28747 . . . . 5  |-  ( [. 1o  /  n ]. E! f ( f  Fn  n  /\  ph  /\  ps )  <->  E! f [. 1o  /  n ]. ( f  Fn  n  /\  ph  /\ 
ps ) )
1513, 14bitr4i 243 . . . 4  |-  ( E! f ( f  Fn  1o  /\  ph'  /\  ps' )  <->  [. 1o  /  n ]. E! f ( f  Fn  n  /\  ph 
/\  ps ) )
1615imbi2i 303 . . 3  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  1o  /\  ph'  /\  ps' ) )  <->  ( ( R  FrSe  A  /\  x  e.  A )  ->  [. 1o  /  n ]. E! f ( f  Fn  n  /\  ph  /\  ps )
) )
17 nfv 1605 . . . . 5  |-  F/ n
( R  FrSe  A  /\  x  e.  A
)
1817sbc19.21g 3055 . . . 4  |-  ( 1o  e.  _V  ->  ( [. 1o  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
)  <->  ( ( R 
FrSe  A  /\  x  e.  A )  ->  [. 1o  /  n ]. E! f ( f  Fn  n  /\  ph  /\  ps )
) ) )
192, 18ax-mp 8 . . 3  |-  ( [. 1o  /  n ]. (
( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
)  <->  ( ( R 
FrSe  A  /\  x  e.  A )  ->  [. 1o  /  n ]. E! f ( f  Fn  n  /\  ph  /\  ps )
) )
2016, 19bitr4i 243 . 2  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  1o  /\  ph'  /\  ps' ) )  <->  [. 1o  /  n ]. ( ( R 
FrSe  A  /\  x  e.  A )  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )
213, 4, 203bitr4i 268 1  |-  ( th'  <->  ( ( R  FrSe  A  /\  x  e.  A )  ->  E! f ( f  Fn  1o  /\  ph'  /\  ps' ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1684   E!weu 2143   _Vcvv 2788   [.wsbc 2991    Fn wfn 5250   1oc1o 6472    FrSe w-bnj15 28717
This theorem is referenced by:  bnj151  28909
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-pw 3627  df-sn 3646  df-suc 4398  df-fn 5258  df-1o 6479
  Copyright terms: Public domain W3C validator