Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1307 Unicode version

Theorem bnj1307 29053
Description: Technical lemma for bnj60 29092. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1307.1  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1307.2  |-  ( w  e.  B  ->  A. x  w  e.  B )
Assertion
Ref Expression
bnj1307  |-  ( w  e.  C  ->  A. x  w  e.  C )
Distinct variable groups:    w, B    w, d, x    x, f
Allowed substitution hints:    B( x, f, d)    C( x, w, f, d)    G( x, w, f, d)    Y( x, w, f, d)

Proof of Theorem bnj1307
StepHypRef Expression
1 bnj1307.1 . . 3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
2 bnj1307.2 . . . . . 6  |-  ( w  e.  B  ->  A. x  w  e.  B )
32nfcii 2410 . . . . 5  |-  F/_ x B
4 nfv 1605 . . . . . 6  |-  F/ x  f  Fn  d
5 nfra1 2593 . . . . . 6  |-  F/ x A. x  e.  d 
( f `  x
)  =  ( G `
 Y )
64, 5nfan 1771 . . . . 5  |-  F/ x
( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) )
73, 6nfrex 2598 . . . 4  |-  F/ x E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) )
87nfab 2423 . . 3  |-  F/_ x { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
91, 8nfcxfr 2416 . 2  |-  F/_ x C
109nfcrii 2412 1  |-  ( w  e.  C  ->  A. x  w  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544    Fn wfn 5250   ` cfv 5255
This theorem is referenced by:  bnj1311  29054  bnj1373  29060  bnj1498  29091  bnj1525  29099  bnj1523  29101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549
  Copyright terms: Public domain W3C validator