Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1309 Structured version   Unicode version

Theorem bnj1309 29489
 Description: Technical lemma for bnj60 29529. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1309.1
Assertion
Ref Expression
bnj1309
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   (,,)   (,,)

Proof of Theorem bnj1309
StepHypRef Expression
1 bnj1309.1 . 2
2 hbra1 2761 . . . 4
32bnj1352 29297 . . 3
43hbab 2433 . 2
51, 4hbxfreq 2545 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wal 1550   wceq 1653   wcel 1727  cab 2428  wral 2711   wss 3306   c-bnj14 29150 This theorem is referenced by:  bnj1311  29491  bnj1373  29497  bnj1498  29528  bnj1525  29536  bnj1523  29538 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-ral 2716
 Copyright terms: Public domain W3C validator