Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1309 Unicode version

Theorem bnj1309 29368
 Description: Technical lemma for bnj60 29408. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1309.1
Assertion
Ref Expression
bnj1309
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   (,,)   (,,)

Proof of Theorem bnj1309
StepHypRef Expression
1 bnj1309.1 . 2
2 nfra1 2606 . . . . 5
32nfri 1754 . . . 4
43bnj1352 29176 . . 3
54hbab 2287 . 2
61, 5hbxfreq 2399 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358  wal 1530   wceq 1632   wcel 1696  cab 2282  wral 2556   wss 3165   c-bnj14 29029 This theorem is referenced by:  bnj1311  29370  bnj1373  29376  bnj1498  29407  bnj1525  29415  bnj1523  29417 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-ral 2561
 Copyright terms: Public domain W3C validator