Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1316 Unicode version

Theorem bnj1316 28853
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1316.1  |-  ( y  e.  A  ->  A. x  y  e.  A )
bnj1316.2  |-  ( y  e.  B  ->  A. x  y  e.  B )
Assertion
Ref Expression
bnj1316  |-  ( A  =  B  ->  U_ x  e.  A  C  =  U_ x  e.  B  C
)
Distinct variable groups:    y, A    y, B    x, y
Allowed substitution hints:    A( x)    B( x)    C( x, y)

Proof of Theorem bnj1316
StepHypRef Expression
1 bnj1316.1 . . . . 5  |-  ( y  e.  A  ->  A. x  y  e.  A )
21nfcii 2410 . . . 4  |-  F/_ x A
3 bnj1316.2 . . . . 5  |-  ( y  e.  B  ->  A. x  y  e.  B )
43nfcii 2410 . . . 4  |-  F/_ x B
52, 4nfeq 2426 . . 3  |-  F/ x  A  =  B
65nfri 1742 . 2  |-  ( A  =  B  ->  A. x  A  =  B )
76bnj956 28808 1  |-  ( A  =  B  ->  U_ x  e.  A  C  =  U_ x  e.  B  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527    = wceq 1623    e. wcel 1684   U_ciun 3905
This theorem is referenced by:  bnj1000  28973  bnj1318  29055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-iun 3907
  Copyright terms: Public domain W3C validator