Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1316 Structured version   Unicode version

Theorem bnj1316 29266
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1316.1
bnj1316.2
Assertion
Ref Expression
bnj1316
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()   (,)

Proof of Theorem bnj1316
StepHypRef Expression
1 bnj1316.1 . . . . 5
21nfcii 2565 . . . 4
3 bnj1316.2 . . . . 5
43nfcii 2565 . . . 4
52, 4nfeq 2581 . . 3
65nfri 1779 . 2
76bnj956 29221 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1550   wceq 1653   wcel 1726  ciun 4095 This theorem is referenced by:  bnj1000  29386  bnj1318  29468 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-iun 4097
 Copyright terms: Public domain W3C validator