Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj133 Structured version   Unicode version

Theorem bnj133 29266
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj133.1  |-  ( ph  <->  E. x ps )
bnj133.2  |-  ( ch  <->  ps )
Assertion
Ref Expression
bnj133  |-  ( ph  <->  E. x ch )

Proof of Theorem bnj133
StepHypRef Expression
1 bnj133.1 . 2  |-  ( ph  <->  E. x ps )
2 bnj133.2 . . 3  |-  ( ch  <->  ps )
32exbii 1593 . 2  |-  ( E. x ch  <->  E. x ps )
41, 3bitr4i 245 1  |-  ( ph  <->  E. x ch )
Colors of variables: wff set class
Syntax hints:    <-> wb 178   E.wex 1551
This theorem is referenced by:  bnj150  29421  bnj983  29496  bnj984  29497  bnj985  29498  bnj1090  29522  bnj1514  29606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567
This theorem depends on definitions:  df-bi 179  df-ex 1552
  Copyright terms: Public domain W3C validator