Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1361 Unicode version

Theorem bnj1361 28906
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1361.1  |-  ( ph  ->  A. x ( x  e.  A  ->  x  e.  B ) )
Assertion
Ref Expression
bnj1361  |-  ( ph  ->  A  C_  B )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem bnj1361
StepHypRef Expression
1 bnj1361.1 . 2  |-  ( ph  ->  A. x ( x  e.  A  ->  x  e.  B ) )
2 dfss2 3297 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
31, 2sylibr 204 1  |-  ( ph  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1546    e. wcel 1721    C_ wss 3280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-in 3287  df-ss 3294
  Copyright terms: Public domain W3C validator