Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1364 Unicode version

Theorem bnj1364 29058
Description: Property of  FrSe. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1364  |-  ( R 
FrSe  A  ->  R  Se  A )

Proof of Theorem bnj1364
StepHypRef Expression
1 df-bnj15 28718 . 2  |-  ( R 
FrSe  A  <->  ( R  Fr  A  /\  R  Se  A
) )
21simprbi 450 1  |-  ( R 
FrSe  A  ->  R  Se  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    Fr wfr 4349    Se w-bnj13 28715    FrSe w-bnj15 28717
This theorem is referenced by:  bnj1489  29086
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-bnj15 28718
  Copyright terms: Public domain W3C validator