Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1364 Structured version   Unicode version

Theorem bnj1364 29471
Description: Property of  FrSe. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1364  |-  ( R 
FrSe  A  ->  R  Se  A )

Proof of Theorem bnj1364
StepHypRef Expression
1 df-bnj15 29131 . 2  |-  ( R 
FrSe  A  <->  ( R  Fr  A  /\  R  Se  A
) )
21simprbi 452 1  |-  ( R 
FrSe  A  ->  R  Se  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    Fr wfr 4541    Se w-bnj13 29128    FrSe w-bnj15 29130
This theorem is referenced by:  bnj1489  29499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-bnj15 29131
  Copyright terms: Public domain W3C validator