Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1386 Unicode version

Theorem bnj1386 28866
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1386.1  |-  ( ph  <->  A. f  e.  A  Fun  f )
bnj1386.2  |-  D  =  ( dom  f  i^i 
dom  g )
bnj1386.3  |-  ( ps  <->  (
ph  /\  A. f  e.  A  A. g  e.  A  ( f  |`  D )  =  ( g  |`  D )
) )
bnj1386.4  |-  ( x  e.  A  ->  A. f  x  e.  A )
Assertion
Ref Expression
bnj1386  |-  ( ps 
->  Fun  U. A )
Distinct variable groups:    A, g, x    f, g, x
Allowed substitution hints:    ph( x, f, g)    ps( x, f, g)    A( f)    D( x, f, g)

Proof of Theorem bnj1386
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 bnj1386.1 . 2  |-  ( ph  <->  A. f  e.  A  Fun  f )
2 bnj1386.2 . 2  |-  D  =  ( dom  f  i^i 
dom  g )
3 bnj1386.3 . 2  |-  ( ps  <->  (
ph  /\  A. f  e.  A  A. g  e.  A  ( f  |`  D )  =  ( g  |`  D )
) )
4 bnj1386.4 . 2  |-  ( x  e.  A  ->  A. f  x  e.  A )
5 biid 227 . 2  |-  ( A. h  e.  A  Fun  h 
<-> 
A. h  e.  A  Fun  h )
6 eqid 2283 . 2  |-  ( dom  h  i^i  dom  g
)  =  ( dom  h  i^i  dom  g
)
7 biid 227 . 2  |-  ( ( A. h  e.  A  Fun  h  /\  A. h  e.  A  A. g  e.  A  ( h  |`  ( dom  h  i^i 
dom  g ) )  =  ( g  |`  ( dom  h  i^i  dom  g ) ) )  <-> 
( A. h  e.  A  Fun  h  /\  A. h  e.  A  A. g  e.  A  (
h  |`  ( dom  h  i^i  dom  g ) )  =  ( g  |`  ( dom  h  i^i  dom  g ) ) ) )
81, 2, 3, 4, 5, 6, 7bnj1385 28865 1  |-  ( ps 
->  Fun  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   A.wral 2543    i^i cin 3151   U.cuni 3827   dom cdm 4689    |` cres 4691   Fun wfun 5249
This theorem is referenced by:  bnj1384  29062
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-res 4701  df-iota 5219  df-fun 5257  df-fv 5263
  Copyright terms: Public domain W3C validator