Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1405 Structured version   Unicode version

Theorem bnj1405 29145
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1405.1  |-  ( ph  ->  X  e.  U_ y  e.  A  B )
Assertion
Ref Expression
bnj1405  |-  ( ph  ->  E. y  e.  A  X  e.  B )
Distinct variable group:    y, X
Allowed substitution hints:    ph( y)    A( y)    B( y)

Proof of Theorem bnj1405
StepHypRef Expression
1 bnj1405.1 . 2  |-  ( ph  ->  X  e.  U_ y  e.  A  B )
2 eliun 4089 . 2  |-  ( X  e.  U_ y  e.  A  B  <->  E. y  e.  A  X  e.  B )
31, 2sylib 189 1  |-  ( ph  ->  E. y  e.  A  X  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725   E.wrex 2698   U_ciun 4085
This theorem is referenced by:  bnj1408  29342  bnj1450  29356  bnj1501  29373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-v 2950  df-iun 4087
  Copyright terms: Public domain W3C validator