Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1413 Unicode version

Theorem bnj1413 28742
Description: Property of  trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1413.1  |-  B  =  (  pred ( X ,  A ,  R )  u.  U_ y  e.  pred  ( X ,  A ,  R )  trCl (
y ,  A ,  R ) )
Assertion
Ref Expression
bnj1413  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  B  e.  _V )
Distinct variable groups:    y, A    y, R    y, X
Allowed substitution hint:    B( y)

Proof of Theorem bnj1413
StepHypRef Expression
1 bnj1148 28703 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  e.  _V )
2 bnj893 28637 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  e.  _V )
3 simp1 957 . . . . . . 7  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
) )  ->  R  FrSe  A )
4 bnj1127 28698 . . . . . . . 8  |-  ( y  e.  trCl ( X ,  A ,  R )  ->  y  e.  A )
543ad2ant3 980 . . . . . . 7  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
) )  ->  y  e.  A )
6 bnj893 28637 . . . . . . 7  |-  ( ( R  FrSe  A  /\  y  e.  A )  ->  trCl ( y ,  A ,  R )  e.  _V )
73, 5, 6syl2anc 643 . . . . . 6  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
) )  ->  trCl (
y ,  A ,  R )  e.  _V )
873expia 1155 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  ( y  e.  trCl ( X ,  A ,  R )  ->  trCl (
y ,  A ,  R )  e.  _V ) )
98ralrimiv 2731 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R )  e.  _V )
10 iunexg 5926 . . . 4  |-  ( ( 
trCl ( X ,  A ,  R )  e.  _V  /\  A. y  e.  trCl  ( X ,  A ,  R )  trCl ( y ,  A ,  R )  e.  _V )  ->  U_ y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R )  e.  _V )
112, 9, 10syl2anc 643 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  U_ y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R )  e.  _V )
121, 11bnj1149 28501 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  (  pred ( X ,  A ,  R )  u.  U_ y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R ) )  e. 
_V )
13 bnj1413.1 . . 3  |-  B  =  (  pred ( X ,  A ,  R )  u.  U_ y  e.  pred  ( X ,  A ,  R )  trCl (
y ,  A ,  R ) )
14 bnj906 28639 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
)
15 iunss1 4046 . . . 4  |-  (  pred ( X ,  A ,  R )  C_  trCl ( X ,  A ,  R )  ->  U_ y  e.  pred  ( X ,  A ,  R )  trCl ( y ,  A ,  R )  C_  U_ y  e.  trCl  ( X ,  A ,  R )  trCl ( y ,  A ,  R ) )
16 unss2 3461 . . . 4  |-  ( U_ y  e.  pred  ( X ,  A ,  R
)  trCl ( y ,  A ,  R ) 
C_  U_ y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R )  ->  (  pred ( X ,  A ,  R )  u.  U_ y  e.  pred  ( X ,  A ,  R
)  trCl ( y ,  A ,  R ) )  C_  (  pred ( X ,  A ,  R )  u.  U_ y  e.  trCl  ( X ,  A ,  R
)  trCl ( y ,  A ,  R ) ) )
1714, 15, 163syl 19 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  (  pred ( X ,  A ,  R )  u.  U_ y  e.  pred  ( X ,  A ,  R )  trCl (
y ,  A ,  R ) )  C_  (  pred ( X ,  A ,  R )  u.  U_ y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R ) ) )
1813, 17syl5eqss 3335 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  B  C_  (  pred ( X ,  A ,  R )  u.  U_ y  e.  trCl  ( X ,  A ,  R
)  trCl ( y ,  A ,  R ) ) )
1912, 18ssexd 4291 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2649   _Vcvv 2899    u. cun 3261    C_ wss 3263   U_ciun 4035    predc-bnj14 28390    FrSe w-bnj15 28394    trClc-bnj18 28396
This theorem is referenced by:  bnj1408  28743
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-reg 7493  ax-inf2 7529
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-1o 6660  df-bnj17 28389  df-bnj14 28391  df-bnj13 28393  df-bnj15 28395  df-bnj18 28397
  Copyright terms: Public domain W3C validator