Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1413 Unicode version

Theorem bnj1413 29381
Description: Property of  trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1413.1  |-  B  =  (  pred ( X ,  A ,  R )  u.  U_ y  e.  pred  ( X ,  A ,  R )  trCl (
y ,  A ,  R ) )
Assertion
Ref Expression
bnj1413  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  B  e.  _V )
Distinct variable groups:    y, A    y, R    y, X
Allowed substitution hint:    B( y)

Proof of Theorem bnj1413
StepHypRef Expression
1 bnj1413.1 . . 3  |-  B  =  (  pred ( X ,  A ,  R )  u.  U_ y  e.  pred  ( X ,  A ,  R )  trCl (
y ,  A ,  R ) )
2 bnj906 29278 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
)
3 iunss1 3932 . . . 4  |-  (  pred ( X ,  A ,  R )  C_  trCl ( X ,  A ,  R )  ->  U_ y  e.  pred  ( X ,  A ,  R )  trCl ( y ,  A ,  R )  C_  U_ y  e.  trCl  ( X ,  A ,  R )  trCl ( y ,  A ,  R ) )
4 unss2 3359 . . . 4  |-  ( U_ y  e.  pred  ( X ,  A ,  R
)  trCl ( y ,  A ,  R ) 
C_  U_ y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R )  ->  (  pred ( X ,  A ,  R )  u.  U_ y  e.  pred  ( X ,  A ,  R
)  trCl ( y ,  A ,  R ) )  C_  (  pred ( X ,  A ,  R )  u.  U_ y  e.  trCl  ( X ,  A ,  R
)  trCl ( y ,  A ,  R ) ) )
52, 3, 43syl 18 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  (  pred ( X ,  A ,  R )  u.  U_ y  e.  pred  ( X ,  A ,  R )  trCl (
y ,  A ,  R ) )  C_  (  pred ( X ,  A ,  R )  u.  U_ y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R ) ) )
61, 5syl5eqss 3235 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  B  C_  (  pred ( X ,  A ,  R )  u.  U_ y  e.  trCl  ( X ,  A ,  R
)  trCl ( y ,  A ,  R ) ) )
7 bnj1148 29342 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  e.  _V )
8 bnj893 29276 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  e.  _V )
9 simp1 955 . . . . . . 7  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
) )  ->  R  FrSe  A )
10 bnj1127 29337 . . . . . . . 8  |-  ( y  e.  trCl ( X ,  A ,  R )  ->  y  e.  A )
11103ad2ant3 978 . . . . . . 7  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
) )  ->  y  e.  A )
12 bnj893 29276 . . . . . . 7  |-  ( ( R  FrSe  A  /\  y  e.  A )  ->  trCl ( y ,  A ,  R )  e.  _V )
139, 11, 12syl2anc 642 . . . . . 6  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
) )  ->  trCl (
y ,  A ,  R )  e.  _V )
14133expia 1153 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  ( y  e.  trCl ( X ,  A ,  R )  ->  trCl (
y ,  A ,  R )  e.  _V ) )
1514ralrimiv 2638 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R )  e.  _V )
16 iunexg 5783 . . . 4  |-  ( ( 
trCl ( X ,  A ,  R )  e.  _V  /\  A. y  e.  trCl  ( X ,  A ,  R )  trCl ( y ,  A ,  R )  e.  _V )  ->  U_ y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R )  e.  _V )
178, 15, 16syl2anc 642 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  U_ y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R )  e.  _V )
187, 17bnj1149 29140 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  (  pred ( X ,  A ,  R )  u.  U_ y  e.  trCl  ( X ,  A ,  R )  trCl (
y ,  A ,  R ) )  e. 
_V )
19 ssexg 4176 . 2  |-  ( ( B  C_  (  pred ( X ,  A ,  R )  u.  U_ y  e.  trCl  ( X ,  A ,  R
)  trCl ( y ,  A ,  R ) )  /\  (  pred ( X ,  A ,  R )  u.  U_ y  e.  trCl  ( X ,  A ,  R
)  trCl ( y ,  A ,  R ) )  e.  _V )  ->  B  e.  _V )
206, 18, 19syl2anc 642 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    u. cun 3163    C_ wss 3165   U_ciun 3921    predc-bnj14 29029    FrSe w-bnj15 29033    trClc-bnj18 29035
This theorem is referenced by:  bnj1408  29382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6495  df-bnj17 29028  df-bnj14 29030  df-bnj13 29032  df-bnj15 29034  df-bnj18 29036
  Copyright terms: Public domain W3C validator