Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1422 Unicode version

Theorem bnj1422 28870
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1422.1  |-  ( ph  ->  Fun  A )
bnj1422.2  |-  ( ph  ->  dom  A  =  B )
Assertion
Ref Expression
bnj1422  |-  ( ph  ->  A  Fn  B )

Proof of Theorem bnj1422
StepHypRef Expression
1 bnj1422.1 . 2  |-  ( ph  ->  Fun  A )
2 bnj1422.2 . 2  |-  ( ph  ->  dom  A  =  B )
3 df-fn 5258 . 2  |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
41, 2, 3sylanbrc 645 1  |-  ( ph  ->  A  Fn  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623   dom cdm 4689   Fun wfun 5249    Fn wfn 5250
This theorem is referenced by:  bnj150  28908  bnj535  28922  bnj1312  29088  bnj60  29092
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-fn 5258
  Copyright terms: Public domain W3C validator