Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1436 Unicode version

Theorem bnj1436 28872
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1436.1  |-  A  =  { x  |  ph }
Assertion
Ref Expression
bnj1436  |-  ( x  e.  A  ->  ph )

Proof of Theorem bnj1436
StepHypRef Expression
1 bnj1436.1 . . 3  |-  A  =  { x  |  ph }
21abeq2i 2390 . 2  |-  ( x  e.  A  <->  ph )
32biimpi 186 1  |-  ( x  e.  A  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {cab 2269
This theorem is referenced by:  bnj1517  28882  bnj66  28892  bnj900  28961  bnj1296  29051  bnj1371  29059  bnj1374  29061  bnj1398  29064  bnj1450  29080  bnj1497  29090  bnj1498  29091  bnj1514  29093  bnj1501  29097
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279
  Copyright terms: Public domain W3C validator