Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1441 Unicode version

Theorem bnj1441 28873
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1441.1  |-  ( x  e.  A  ->  A. y  x  e.  A )
bnj1441.2  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
bnj1441  |-  ( z  e.  { x  e.  A  |  ph }  ->  A. y  z  e. 
{ x  e.  A  |  ph } )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)    A( x, y, z)

Proof of Theorem bnj1441
StepHypRef Expression
1 df-rab 2552 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 bnj1441.1 . . . 4  |-  ( x  e.  A  ->  A. y  x  e.  A )
3 bnj1441.2 . . . 4  |-  ( ph  ->  A. y ph )
42, 3hban 1736 . . 3  |-  ( ( x  e.  A  /\  ph )  ->  A. y
( x  e.  A  /\  ph ) )
54hbab 2274 . 2  |-  ( z  e.  { x  |  ( x  e.  A  /\  ph ) }  ->  A. y  z  e.  {
x  |  ( x  e.  A  /\  ph ) } )
61, 5hbxfreq 2386 1  |-  ( z  e.  { x  e.  A  |  ph }  ->  A. y  z  e. 
{ x  e.  A  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527    e. wcel 1684   {cab 2269   {crab 2547
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-rab 2552
  Copyright terms: Public domain W3C validator