Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1444 Structured version   Unicode version

Theorem bnj1444 29486
 Description: Technical lemma for bnj60 29505. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1444.1
bnj1444.2
bnj1444.3
bnj1444.4
bnj1444.5
bnj1444.6
bnj1444.7
bnj1444.8
bnj1444.9
bnj1444.10
bnj1444.11
bnj1444.12
bnj1444.13
bnj1444.14
bnj1444.15
bnj1444.16
bnj1444.17
bnj1444.18
bnj1444.19
bnj1444.20
Assertion
Ref Expression
bnj1444
Distinct variable groups:   ,   ,   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   (,,,)   (,,,,)   (,,,,)   (,,,,)   (,,,,)   (,,,,)   (,,,,)   (,,,)   (,,,,)   (,,,,)   (,,,)   (,,,,)   (,,,,)   (,,,)   (,,,)   (,,,,)   (,,,,)   (,,,,)   (,,,,)   (,,,,)   (,,,,)

Proof of Theorem bnj1444
StepHypRef Expression
1 bnj1444.20 . . 3
2 bnj1444.19 . . . . 5
3 bnj1444.17 . . . . . . 7
4 bnj1444.7 . . . . . . . . 9
5 nfv 1630 . . . . . . . . . 10
6 nfv 1630 . . . . . . . . . 10
7 nfra1 2758 . . . . . . . . . 10
85, 6, 7nf3an 1850 . . . . . . . . 9
94, 8nfxfr 1580 . . . . . . . 8
10 nfv 1630 . . . . . . . 8
119, 10nfan 1847 . . . . . . 7
123, 11nfxfr 1580 . . . . . 6
13 nfv 1630 . . . . . 6
1412, 13nfan 1847 . . . . 5
152, 14nfxfr 1580 . . . 4
16 bnj1444.9 . . . . . 6
17 nfre1 2764 . . . . . . 7
1817nfab 2578 . . . . . 6
1916, 18nfcxfr 2571 . . . . 5
2019nfcri 2568 . . . 4
21 nfv 1630 . . . 4
2215, 20, 21nf3an 1850 . . 3
231, 22nfxfr 1580 . 2
2423nfri 1779 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 178   wa 360   w3a 937  wal 1550  wex 1551   wceq 1653   wcel 1726  cab 2424   wne 2601  wral 2707  wrex 2708  crab 2711  wsbc 3163   cun 3320   wss 3322  c0 3630  csn 3816  cop 3819  cuni 4017   class class class wbr 4215   cdm 4881   cres 4883   wfn 5452  cfv 5457   c-bnj14 29126   w-bnj15 29130   c-bnj18 29132 This theorem is referenced by:  bnj1450  29493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713
 Copyright terms: Public domain W3C validator