Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1447 Unicode version

Theorem bnj1447 29076
Description: Technical lemma for bnj60 29092. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1447.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1447.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1447.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1447.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
bnj1447.5  |-  D  =  { x  e.  A  |  -.  E. f ta }
bnj1447.6  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
bnj1447.7  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
bnj1447.8  |-  ( ta'  <->  [. y  /  x ]. ta )
bnj1447.9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
bnj1447.10  |-  P  = 
U. H
bnj1447.11  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
bnj1447.12  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
bnj1447.13  |-  W  = 
<. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
Assertion
Ref Expression
bnj1447  |-  ( ( Q `  z )  =  ( G `  W )  ->  A. y
( Q `  z
)  =  ( G `
 W ) )
Distinct variable groups:    y, A    y, G    y, R    x, y    y, z
Allowed substitution hints:    ps( x, y, z, f, d)    ch( x, y, z, f, d)    ta( x, y, z, f, d)    A( x, z, f, d)    B( x, y, z, f, d)    C( x, y, z, f, d)    D( x, y, z, f, d)    P( x, y, z, f, d)    Q( x, y, z, f, d)    R( x, z, f, d)    G( x, z, f, d)    H( x, y, z, f, d)    W( x, y, z, f, d)    Y( x, y, z, f, d)    Z( x, y, z, f, d)    ta'( x, y, z, f, d)

Proof of Theorem bnj1447
StepHypRef Expression
1 bnj1447.12 . . . . 5  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
2 bnj1447.10 . . . . . . 7  |-  P  = 
U. H
3 bnj1447.9 . . . . . . . . 9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
4 nfre1 2599 . . . . . . . . . 10  |-  F/ y E. y  e.  pred  ( x ,  A ,  R ) ta'
54nfab 2423 . . . . . . . . 9  |-  F/_ y { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
63, 5nfcxfr 2416 . . . . . . . 8  |-  F/_ y H
76nfuni 3833 . . . . . . 7  |-  F/_ y U. H
82, 7nfcxfr 2416 . . . . . 6  |-  F/_ y P
9 nfcv 2419 . . . . . . . 8  |-  F/_ y
x
10 nfcv 2419 . . . . . . . . 9  |-  F/_ y G
11 bnj1447.11 . . . . . . . . . 10  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
12 nfcv 2419 . . . . . . . . . . . 12  |-  F/_ y  pred ( x ,  A ,  R )
138, 12nfres 4957 . . . . . . . . . . 11  |-  F/_ y
( P  |`  pred (
x ,  A ,  R ) )
149, 13nfop 3812 . . . . . . . . . 10  |-  F/_ y <. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
1511, 14nfcxfr 2416 . . . . . . . . 9  |-  F/_ y Z
1610, 15nffv 5532 . . . . . . . 8  |-  F/_ y
( G `  Z
)
179, 16nfop 3812 . . . . . . 7  |-  F/_ y <. x ,  ( G `
 Z ) >.
1817nfsn 3691 . . . . . 6  |-  F/_ y { <. x ,  ( G `  Z )
>. }
198, 18nfun 3331 . . . . 5  |-  F/_ y
( P  u.  { <. x ,  ( G `
 Z ) >. } )
201, 19nfcxfr 2416 . . . 4  |-  F/_ y Q
21 nfcv 2419 . . . 4  |-  F/_ y
z
2220, 21nffv 5532 . . 3  |-  F/_ y
( Q `  z
)
23 bnj1447.13 . . . . 5  |-  W  = 
<. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
24 nfcv 2419 . . . . . . 7  |-  F/_ y  pred ( z ,  A ,  R )
2520, 24nfres 4957 . . . . . 6  |-  F/_ y
( Q  |`  pred (
z ,  A ,  R ) )
2621, 25nfop 3812 . . . . 5  |-  F/_ y <. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
2723, 26nfcxfr 2416 . . . 4  |-  F/_ y W
2810, 27nffv 5532 . . 3  |-  F/_ y
( G `  W
)
2922, 28nfeq 2426 . 2  |-  F/ y ( Q `  z
)  =  ( G `
 W )
3029nfri 1742 1  |-  ( ( Q `  z )  =  ( G `  W )  ->  A. y
( Q `  z
)  =  ( G `
 W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547   [.wsbc 2991    u. cun 3150    C_ wss 3152   (/)c0 3455   {csn 3640   <.cop 3643   U.cuni 3827   class class class wbr 4023   dom cdm 4689    |` cres 4691    Fn wfn 5250   ` cfv 5255    predc-bnj14 28713    FrSe w-bnj15 28717    trClc-bnj18 28719
This theorem is referenced by:  bnj1450  29080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-res 4701  df-iota 5219  df-fv 5263
  Copyright terms: Public domain W3C validator