Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1464 Unicode version

Theorem bnj1464 28876
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1464.1  |-  ( ps 
->  A. x ps )
bnj1464.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
bnj1464  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
Distinct variable groups:    x, A    x, V
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem bnj1464
StepHypRef Expression
1 bnj1464.1 . . 3  |-  ( ps 
->  A. x ps )
21nfi 1538 . 2  |-  F/ x ps
3 bnj1464.2 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
42, 3sbciegf 3022 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527    = wceq 1623    e. wcel 1684   [.wsbc 2991
This theorem is referenced by:  bnj1465  28877  bnj1468  28878
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992
  Copyright terms: Public domain W3C validator