Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1467 Structured version   Unicode version

Theorem bnj1467 29423
Description: Technical lemma for bnj60 29431. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1467.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1467.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1467.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1467.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
bnj1467.5  |-  D  =  { x  e.  A  |  -.  E. f ta }
bnj1467.6  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
bnj1467.7  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
bnj1467.8  |-  ( ta'  <->  [. y  /  x ]. ta )
bnj1467.9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
bnj1467.10  |-  P  = 
U. H
bnj1467.11  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
bnj1467.12  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
Assertion
Ref Expression
bnj1467  |-  ( w  e.  Q  ->  A. d  w  e.  Q )
Distinct variable groups:    A, d, w, x    B, f    w, C    G, d, w    w, H    w, P    R, d, w, x    w, Z    f,
d, w, x    y,
d, x
Allowed substitution hints:    ps( x, y, w, f, d)    ch( x, y, w, f, d)    ta( x, y, w, f, d)    A( y, f)    B( x, y, w, d)    C( x, y, f, d)    D( x, y, w, f, d)    P( x, y, f, d)    Q( x, y, w, f, d)    R( y, f)    G( x, y, f)    H( x, y, f, d)    Y( x, y, w, f, d)    Z( x, y, f, d)    ta'( x, y, w, f, d)

Proof of Theorem bnj1467
StepHypRef Expression
1 bnj1467.12 . . 3  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
2 bnj1467.10 . . . . 5  |-  P  = 
U. H
3 bnj1467.9 . . . . . . 7  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
4 nfcv 2572 . . . . . . . . 9  |-  F/_ d  pred ( x ,  A ,  R )
5 bnj1467.8 . . . . . . . . . 10  |-  ( ta'  <->  [. y  /  x ]. ta )
6 nfcv 2572 . . . . . . . . . . 11  |-  F/_ d
y
7 bnj1467.4 . . . . . . . . . . . 12  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
8 bnj1467.3 . . . . . . . . . . . . . . 15  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
9 nfre1 2762 . . . . . . . . . . . . . . . 16  |-  F/ d E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) )
109nfab 2576 . . . . . . . . . . . . . . 15  |-  F/_ d { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
118, 10nfcxfr 2569 . . . . . . . . . . . . . 14  |-  F/_ d C
1211nfcri 2566 . . . . . . . . . . . . 13  |-  F/ d  f  e.  C
13 nfv 1629 . . . . . . . . . . . . 13  |-  F/ d dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
1412, 13nfan 1846 . . . . . . . . . . . 12  |-  F/ d ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
157, 14nfxfr 1579 . . . . . . . . . . 11  |-  F/ d ta
166, 15nfsbc 3182 . . . . . . . . . 10  |-  F/ d
[. y  /  x ]. ta
175, 16nfxfr 1579 . . . . . . . . 9  |-  F/ d ta'
184, 17nfrex 2761 . . . . . . . 8  |-  F/ d E. y  e.  pred  ( x ,  A ,  R ) ta'
1918nfab 2576 . . . . . . 7  |-  F/_ d { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
203, 19nfcxfr 2569 . . . . . 6  |-  F/_ d H
2120nfuni 4021 . . . . 5  |-  F/_ d U. H
222, 21nfcxfr 2569 . . . 4  |-  F/_ d P
23 nfcv 2572 . . . . . 6  |-  F/_ d
x
24 nfcv 2572 . . . . . . 7  |-  F/_ d G
25 bnj1467.11 . . . . . . . 8  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
2622, 4nfres 5148 . . . . . . . . 9  |-  F/_ d
( P  |`  pred (
x ,  A ,  R ) )
2723, 26nfop 4000 . . . . . . . 8  |-  F/_ d <. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
2825, 27nfcxfr 2569 . . . . . . 7  |-  F/_ d Z
2924, 28nffv 5735 . . . . . 6  |-  F/_ d
( G `  Z
)
3023, 29nfop 4000 . . . . 5  |-  F/_ d <. x ,  ( G `
 Z ) >.
3130nfsn 3866 . . . 4  |-  F/_ d { <. x ,  ( G `  Z )
>. }
3222, 31nfun 3503 . . 3  |-  F/_ d
( P  u.  { <. x ,  ( G `
 Z ) >. } )
331, 32nfcxfr 2569 . 2  |-  F/_ d Q
3433nfcrii 2565 1  |-  ( w  e.  Q  ->  A. d  w  e.  Q )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2422    =/= wne 2599   A.wral 2705   E.wrex 2706   {crab 2709   [.wsbc 3161    u. cun 3318    C_ wss 3320   (/)c0 3628   {csn 3814   <.cop 3817   U.cuni 4015   class class class wbr 4212   dom cdm 4878    |` cres 4880    Fn wfn 5449   ` cfv 5454    predc-bnj14 29052    FrSe w-bnj15 29056    trClc-bnj18 29058
This theorem is referenced by:  bnj1463  29424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-xp 4884  df-res 4890  df-iota 5418  df-fv 5462
  Copyright terms: Public domain W3C validator