Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1468 Unicode version

Theorem bnj1468 28878
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1468.1  |-  ( ps 
->  A. x ps )
bnj1468.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
bnj1468.3  |-  ( y  e.  A  ->  A. x  y  e.  A )
Assertion
Ref Expression
bnj1468  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
Distinct variable groups:    y, A    y, V    ph, y    ps, y    x, y
Allowed substitution hints:    ph( x)    ps( x)    A( x)    V( x)

Proof of Theorem bnj1468
StepHypRef Expression
1 sbcco 3013 . 2  |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph )
2 ax-17 1603 . . 3  |-  ( ps 
->  A. y ps )
3 bnj1468.3 . . . . . . . 8  |-  ( y  e.  A  ->  A. x  y  e.  A )
43nfcii 2410 . . . . . . 7  |-  F/_ x A
54nfeq2 2430 . . . . . 6  |-  F/ x  y  =  A
6 nfsbc1v 3010 . . . . . . 7  |-  F/ x [. y  /  x ]. ph
7 bnj1468.1 . . . . . . . 8  |-  ( ps 
->  A. x ps )
87nfi 1538 . . . . . . 7  |-  F/ x ps
96, 8nfbi 1772 . . . . . 6  |-  F/ x
( [. y  /  x ]. ph  <->  ps )
105, 9nfim 1769 . . . . 5  |-  F/ x
( y  =  A  ->  ( [. y  /  x ]. ph  <->  ps )
)
1110nfri 1742 . . . 4  |-  ( ( y  =  A  -> 
( [. y  /  x ]. ph  <->  ps ) )  ->  A. x ( y  =  A  ->  ( [. y  /  x ]. ph  <->  ps )
) )
12 a9ev 1637 . . . . 5  |-  E. x  x  =  y
13 eqeq1 2289 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
14 bnj1468.2 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
1513, 14syl6bir 220 . . . . . 6  |-  ( x  =  y  ->  (
y  =  A  -> 
( ph  <->  ps ) ) )
16 sbceq1a 3001 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<-> 
[. y  /  x ]. ph ) )
1716bibi1d 310 . . . . . 6  |-  ( x  =  y  ->  (
( ph  <->  ps )  <->  ( [. y  /  x ]. ph  <->  ps )
) )
1815, 17sylibd 205 . . . . 5  |-  ( x  =  y  ->  (
y  =  A  -> 
( [. y  /  x ]. ph  <->  ps ) ) )
1912, 18bnj101 28749 . . . 4  |-  E. x
( y  =  A  ->  ( [. y  /  x ]. ph  <->  ps )
)
2011, 19bnj1131 28819 . . 3  |-  ( y  =  A  ->  ( [. y  /  x ]. ph  <->  ps ) )
212, 20bnj1464 28876 . 2  |-  ( A  e.  V  ->  ( [. A  /  y ]. [. y  /  x ]. ph  <->  ps ) )
221, 21syl5bbr 250 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527    = wceq 1623    e. wcel 1684   [.wsbc 2991
This theorem is referenced by:  bnj1463  29085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992
  Copyright terms: Public domain W3C validator