Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1493 Unicode version

Theorem bnj1493 29089
Description: Technical lemma for bnj60 29092. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1493.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1493.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1493.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
Assertion
Ref Expression
bnj1493  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
Distinct variable groups:    A, d,
f, x    B, f    G, d, f, x    R, d, f, x
Allowed substitution hints:    B( x, d)    C( x, f, d)    Y( x, f, d)

Proof of Theorem bnj1493
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1493.1 . 2  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
2 bnj1493.2 . 2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
3 bnj1493.3 . 2  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
4 biid 227 . 2  |-  ( ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )  <-> 
( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
5 eqid 2283 . 2  |-  { x  e.  A  |  -.  E. f ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R
) ) ) }  =  { x  e.  A  |  -.  E. f ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R
) ) ) }
6 biid 227 . 2  |-  ( ( R  FrSe  A  /\  { x  e.  A  |  -.  E. f ( f  e.  C  /\  dom  f  =  ( {
x }  u.  trCl ( x ,  A ,  R ) ) ) }  =/=  (/) )  <->  ( R  FrSe  A  /\  { x  e.  A  |  -.  E. f ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R
) ) ) }  =/=  (/) ) )
7 biid 227 . 2  |-  ( ( ( R  FrSe  A  /\  { x  e.  A  |  -.  E. f ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  =/=  (/) )  /\  x  e.  { x  e.  A  |  -.  E. f ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R
) ) ) }  /\  A. y  e. 
{ x  e.  A  |  -.  E. f ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  -.  y R x )  <->  ( ( R  FrSe  A  /\  {
x  e.  A  |  -.  E. f ( f  e.  C  /\  dom  f  =  ( {
x }  u.  trCl ( x ,  A ,  R ) ) ) }  =/=  (/) )  /\  x  e.  { x  e.  A  |  -.  E. f ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R
) ) ) }  /\  A. y  e. 
{ x  e.  A  |  -.  E. f ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  -.  y R x ) )
8 biid 227 . 2  |-  ( [. y  /  x ]. (
f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )  <->  [. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
9 eqid 2283 . 2  |-  { f  |  E. y  e. 
pred  ( x ,  A ,  R )
[. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  =  { f  |  E. y  e. 
pred  ( x ,  A ,  R )
[. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }
10 eqid 2283 . 2  |-  U. {
f  |  E. y  e.  pred  ( x ,  A ,  R )
[. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  =  U. {
f  |  E. y  e.  pred  ( x ,  A ,  R )
[. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }
11 eqid 2283 . 2  |-  <. x ,  ( U. {
f  |  E. y  e.  pred  ( x ,  A ,  R )
[. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  |`  pred ( x ,  A ,  R
) ) >.  =  <. x ,  ( U. {
f  |  E. y  e.  pred  ( x ,  A ,  R )
[. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  |`  pred ( x ,  A ,  R
) ) >.
12 eqid 2283 . 2  |-  ( U. { f  |  E. y  e.  pred  ( x ,  A ,  R
) [. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  u.  { <. x ,  ( G `  <. x ,  ( U. { f  |  E. y  e.  pred  ( x ,  A ,  R
) [. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  |`  pred ( x ,  A ,  R
) ) >. ) >. } )  =  ( U. { f  |  E. y  e.  pred  ( x ,  A ,  R ) [. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( {
x }  u.  trCl ( x ,  A ,  R ) ) ) }  u.  { <. x ,  ( G `  <. x ,  ( U. { f  |  E. y  e.  pred  ( x ,  A ,  R
) [. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  |`  pred ( x ,  A ,  R
) ) >. ) >. } )
13 eqid 2283 . 2  |-  <. z ,  ( ( U. { f  |  E. y  e.  pred  ( x ,  A ,  R
) [. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  u.  { <. x ,  ( G `  <. x ,  ( U. { f  |  E. y  e.  pred  ( x ,  A ,  R
) [. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  |`  pred ( x ,  A ,  R
) ) >. ) >. } )  |`  pred (
z ,  A ,  R ) ) >.  =  <. z ,  ( ( U. { f  |  E. y  e. 
pred  ( x ,  A ,  R )
[. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  u.  { <. x ,  ( G `  <. x ,  ( U. { f  |  E. y  e.  pred  ( x ,  A ,  R
) [. y  /  x ]. ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) }  |`  pred ( x ,  A ,  R
) ) >. ) >. } )  |`  pred (
z ,  A ,  R ) ) >.
14 eqid 2283 . 2  |-  ( { x }  u.  trCl ( x ,  A ,  R ) )  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14bnj1312 29088 1  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547   [.wsbc 2991    u. cun 3150    C_ wss 3152   (/)c0 3455   {csn 3640   <.cop 3643   U.cuni 3827   class class class wbr 4023   dom cdm 4689    |` cres 4691    Fn wfn 5250   ` cfv 5255    predc-bnj14 28713    FrSe w-bnj15 28717    trClc-bnj18 28719
This theorem is referenced by:  bnj1498  29091
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-reg 7306  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-bnj17 28712  df-bnj14 28714  df-bnj13 28716  df-bnj15 28718  df-bnj18 28720  df-bnj19 28722
  Copyright terms: Public domain W3C validator