Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1497 Structured version   Unicode version

Theorem bnj1497 29429
 Description: Technical lemma for bnj60 29431. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1497.1
bnj1497.2
bnj1497.3
Assertion
Ref Expression
bnj1497
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,,,)   (,,,)   (,,)   (,,,)   (,,,)   (,,,)

Proof of Theorem bnj1497
StepHypRef Expression
1 bnj1497.3 . . . . . 6
21bnj1317 29193 . . . . 5
32nfi 1560 . . . 4
4 nfv 1629 . . . 4
53, 4nfim 1832 . . 3
6 eleq1 2496 . . . 4
7 funeq 5473 . . . 4
86, 7imbi12d 312 . . 3
91bnj1436 29211 . . . . . 6
109bnj1299 29190 . . . . 5
11 fnfun 5542 . . . . 5
1210, 11bnj31 29084 . . . 4
1312bnj1265 29184 . . 3
145, 8, 13chvar 1968 . 2
1514rgen 2771 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725  cab 2422  wral 2705  wrex 2706   wss 3320  cop 3817   cres 4880   wfun 5448   wfn 5449  cfv 5454   c-bnj14 29052 This theorem is referenced by:  bnj60  29431 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-in 3327  df-ss 3334  df-br 4213  df-opab 4267  df-rel 4885  df-cnv 4886  df-co 4887  df-fun 5456  df-fn 5457
 Copyright terms: Public domain W3C validator