Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1514 Unicode version

Theorem bnj1514 29409
Description: Technical lemma for bnj1500 29414. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1514.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1514.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1514.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
Assertion
Ref Expression
bnj1514  |-  ( f  e.  C  ->  A. x  e.  dom  f ( f `
 x )  =  ( G `  Y
) )
Distinct variable groups:    x, A    G, d    Y, d    f, d, x
Allowed substitution hints:    A( f, d)    B( x, f, d)    C( x, f, d)    R( x, f, d)    G( x, f)    Y( x, f)

Proof of Theorem bnj1514
StepHypRef Expression
1 bnj1514.3 . . . . 5  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
21bnj1436 29188 . . . 4  |-  ( f  e.  C  ->  E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) )
3 df-rex 2562 . . . . 5  |-  ( E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  <->  E. d
( d  e.  B  /\  ( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) ) ) )
4 3anass 938 . . . . 5  |-  ( ( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  <->  ( d  e.  B  /\  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) ) )
53, 4bnj133 29069 . . . 4  |-  ( E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  <->  E. d
( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) ) )
62, 5sylib 188 . . 3  |-  ( f  e.  C  ->  E. d
( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) ) )
7 simp3 957 . . . 4  |-  ( ( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  ->  A. x  e.  d 
( f `  x
)  =  ( G `
 Y ) )
8 fndm 5359 . . . . . 6  |-  ( f  Fn  d  ->  dom  f  =  d )
983ad2ant2 977 . . . . 5  |-  ( ( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  ->  dom  f  =  d
)
109raleqdv 2755 . . . 4  |-  ( ( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  -> 
( A. x  e. 
dom  f ( f `
 x )  =  ( G `  Y
)  <->  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) ) )
117, 10mpbird 223 . . 3  |-  ( ( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  ->  A. x  e.  dom  f ( f `  x )  =  ( G `  Y ) )
126, 11bnj593 29090 . 2  |-  ( f  e.  C  ->  E. d A. x  e.  dom  f ( f `  x )  =  ( G `  Y ) )
1312bnj937 29119 1  |-  ( f  e.  C  ->  A. x  e.  dom  f ( f `
 x )  =  ( G `  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557    C_ wss 3165   <.cop 3656   dom cdm 4705    |` cres 4707    Fn wfn 5266   ` cfv 5271    predc-bnj14 29029
This theorem is referenced by:  bnj1501  29413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-fn 5274
  Copyright terms: Public domain W3C validator