Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1514 Structured version   Unicode version

Theorem bnj1514 29432
 Description: Technical lemma for bnj1500 29437. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1514.1
bnj1514.2
bnj1514.3
Assertion
Ref Expression
bnj1514
Distinct variable groups:   ,   ,   ,   ,,
Allowed substitution hints:   (,)   (,,)   (,,)   (,,)   (,)   (,)

Proof of Theorem bnj1514
StepHypRef Expression
1 bnj1514.3 . . . . 5
21bnj1436 29211 . . . 4
3 df-rex 2711 . . . . 5
4 3anass 940 . . . . 5
53, 4bnj133 29092 . . . 4
62, 5sylib 189 . . 3
7 simp3 959 . . . 4
8 fndm 5544 . . . . . 6
983ad2ant2 979 . . . . 5
109raleqdv 2910 . . . 4
117, 10mpbird 224 . . 3
126, 11bnj593 29113 . 2
1312bnj937 29142 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936  wex 1550   wceq 1652   wcel 1725  cab 2422  wral 2705  wrex 2706   wss 3320  cop 3817   cdm 4878   cres 4880   wfn 5449  cfv 5454   c-bnj14 29052 This theorem is referenced by:  bnj1501  29436 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-fn 5457
 Copyright terms: Public domain W3C validator