Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1519 Structured version   Unicode version

Theorem bnj1519 29371
Description: Technical lemma for bnj1500 29374. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1519.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1519.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1519.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1519.4  |-  F  = 
U. C
Assertion
Ref Expression
bnj1519  |-  ( ( F `  x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R ) ) >. )  ->  A. d
( F `  x
)  =  ( G `
 <. x ,  ( F  |`  pred ( x ,  A ,  R
) ) >. )
)
Distinct variable groups:    A, d    G, d    R, d    x, d
Allowed substitution hints:    A( x, f)    B( x, f, d)    C( x, f, d)    R( x, f)    F( x, f, d)    G( x, f)    Y( x, f, d)

Proof of Theorem bnj1519
StepHypRef Expression
1 bnj1519.4 . . . . 5  |-  F  = 
U. C
2 bnj1519.3 . . . . . . 7  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
3 nfre1 2754 . . . . . . . 8  |-  F/ d E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) )
43nfab 2575 . . . . . . 7  |-  F/_ d { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
52, 4nfcxfr 2568 . . . . . 6  |-  F/_ d C
65nfuni 4013 . . . . 5  |-  F/_ d U. C
71, 6nfcxfr 2568 . . . 4  |-  F/_ d F
8 nfcv 2571 . . . 4  |-  F/_ d
x
97, 8nffv 5727 . . 3  |-  F/_ d
( F `  x
)
10 nfcv 2571 . . . 4  |-  F/_ d G
11 nfcv 2571 . . . . . 6  |-  F/_ d  pred ( x ,  A ,  R )
127, 11nfres 5140 . . . . 5  |-  F/_ d
( F  |`  pred (
x ,  A ,  R ) )
138, 12nfop 3992 . . . 4  |-  F/_ d <. x ,  ( F  |`  pred ( x ,  A ,  R ) ) >.
1410, 13nffv 5727 . . 3  |-  F/_ d
( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R ) ) >.
)
159, 14nfeq 2578 . 2  |-  F/ d ( F `  x
)  =  ( G `
 <. x ,  ( F  |`  pred ( x ,  A ,  R
) ) >. )
1615nfri 1778 1  |-  ( ( F `  x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R ) ) >. )  ->  A. d
( F `  x
)  =  ( G `
 <. x ,  ( F  |`  pred ( x ,  A ,  R
) ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1549    = wceq 1652   {cab 2421   A.wral 2697   E.wrex 2698    C_ wss 3312   <.cop 3809   U.cuni 4007    |` cres 4872    Fn wfn 5441   ` cfv 5446    predc-bnj14 28989
This theorem is referenced by:  bnj1501  29373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-res 4882  df-iota 5410  df-fv 5454
  Copyright terms: Public domain W3C validator