Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1520 Structured version   Unicode version

Theorem bnj1520 29497
 Description: Technical lemma for bnj1500 29499. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1520.1
bnj1520.2
bnj1520.3
bnj1520.4
Assertion
Ref Expression
bnj1520
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   (,)   (,,)   (,,)   (,)   (,,)   (,)   (,,)

Proof of Theorem bnj1520
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 bnj1520.4 . . . . 5
2 bnj1520.3 . . . . . . . 8
32bnj1317 29255 . . . . . . 7
43nfcii 2565 . . . . . 6
54nfuni 4023 . . . . 5
61, 5nfcxfr 2571 . . . 4
7 nfcv 2574 . . . 4
86, 7nffv 5737 . . 3
9 nfcv 2574 . . . 4
10 nfcv 2574 . . . . . 6
116, 10nfres 5150 . . . . 5
127, 11nfop 4002 . . . 4
139, 12nffv 5737 . . 3
148, 13nfeq 2581 . 2
1514nfri 1779 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wal 1550   wceq 1653  cab 2424  wral 2707  wrex 2708   wss 3322  cop 3819  cuni 4017   cres 4882   wfn 5451  cfv 5456   c-bnj14 29114 This theorem is referenced by:  bnj1501  29498 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-xp 4886  df-res 4892  df-iota 5420  df-fv 5464
 Copyright terms: Public domain W3C validator