Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1533 Unicode version

Theorem bnj1533 29200
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1533.1  |-  ( th 
->  A. z  e.  B  -.  z  e.  D
)
bnj1533.2  |-  B  C_  A
bnj1533.3  |-  D  =  { z  e.  A  |  C  =/=  E }
Assertion
Ref Expression
bnj1533  |-  ( th 
->  A. z  e.  B  C  =  E )

Proof of Theorem bnj1533
StepHypRef Expression
1 bnj1533.1 . . . 4  |-  ( th 
->  A. z  e.  B  -.  z  e.  D
)
21bnj1211 29146 . . 3  |-  ( th 
->  A. z ( z  e.  B  ->  -.  z  e.  D )
)
3 bnj1533.3 . . . . . . . . 9  |-  D  =  { z  e.  A  |  C  =/=  E }
43rabeq2i 2798 . . . . . . . 8  |-  ( z  e.  D  <->  ( z  e.  A  /\  C  =/= 
E ) )
54notbii 287 . . . . . . 7  |-  ( -.  z  e.  D  <->  -.  (
z  e.  A  /\  C  =/=  E ) )
6 imnan 411 . . . . . . 7  |-  ( ( z  e.  A  ->  -.  C  =/=  E
)  <->  -.  ( z  e.  A  /\  C  =/= 
E ) )
7 nne 2463 . . . . . . . 8  |-  ( -.  C  =/=  E  <->  C  =  E )
87imbi2i 303 . . . . . . 7  |-  ( ( z  e.  A  ->  -.  C  =/=  E
)  <->  ( z  e.  A  ->  C  =  E ) )
95, 6, 83bitr2i 264 . . . . . 6  |-  ( -.  z  e.  D  <->  ( z  e.  A  ->  C  =  E ) )
109imbi2i 303 . . . . 5  |-  ( ( z  e.  B  ->  -.  z  e.  D
)  <->  ( z  e.  B  ->  ( z  e.  A  ->  C  =  E ) ) )
11 bnj1533.2 . . . . . . . 8  |-  B  C_  A
1211sseli 3189 . . . . . . 7  |-  ( z  e.  B  ->  z  e.  A )
1312imim1i 54 . . . . . 6  |-  ( ( z  e.  A  ->  C  =  E )  ->  ( z  e.  B  ->  C  =  E ) )
14 ax-1 5 . . . . . . . . . 10  |-  ( ( z  e.  A  ->  C  =  E )  ->  ( z  e.  B  ->  ( z  e.  A  ->  C  =  E ) ) )
1514anim1i 551 . . . . . . . . 9  |-  ( ( ( z  e.  A  ->  C  =  E )  /\  z  e.  B
)  ->  ( (
z  e.  B  -> 
( z  e.  A  ->  C  =  E ) )  /\  z  e.  B ) )
16 simpr 447 . . . . . . . . . . 11  |-  ( ( ( z  e.  B  ->  ( z  e.  A  ->  C  =  E ) )  /\  z  e.  B )  ->  z  e.  B )
17 simpl 443 . . . . . . . . . . 11  |-  ( ( ( z  e.  B  ->  ( z  e.  A  ->  C  =  E ) )  /\  z  e.  B )  ->  (
z  e.  B  -> 
( z  e.  A  ->  C  =  E ) ) )
1816, 17mpd 14 . . . . . . . . . 10  |-  ( ( ( z  e.  B  ->  ( z  e.  A  ->  C  =  E ) )  /\  z  e.  B )  ->  (
z  e.  A  ->  C  =  E )
)
1918, 16jca 518 . . . . . . . . 9  |-  ( ( ( z  e.  B  ->  ( z  e.  A  ->  C  =  E ) )  /\  z  e.  B )  ->  (
( z  e.  A  ->  C  =  E )  /\  z  e.  B
) )
2015, 19impbii 180 . . . . . . . 8  |-  ( ( ( z  e.  A  ->  C  =  E )  /\  z  e.  B
)  <->  ( ( z  e.  B  ->  (
z  e.  A  ->  C  =  E )
)  /\  z  e.  B ) )
2120imbi1i 315 . . . . . . 7  |-  ( ( ( ( z  e.  A  ->  C  =  E )  /\  z  e.  B )  ->  C  =  E )  <->  ( (
( z  e.  B  ->  ( z  e.  A  ->  C  =  E ) )  /\  z  e.  B )  ->  C  =  E ) )
22 impexp 433 . . . . . . 7  |-  ( ( ( ( z  e.  A  ->  C  =  E )  /\  z  e.  B )  ->  C  =  E )  <->  ( (
z  e.  A  ->  C  =  E )  ->  ( z  e.  B  ->  C  =  E ) ) )
23 impexp 433 . . . . . . 7  |-  ( ( ( ( z  e.  B  ->  ( z  e.  A  ->  C  =  E ) )  /\  z  e.  B )  ->  C  =  E )  <-> 
( ( z  e.  B  ->  ( z  e.  A  ->  C  =  E ) )  -> 
( z  e.  B  ->  C  =  E ) ) )
2421, 22, 233bitr3i 266 . . . . . 6  |-  ( ( ( z  e.  A  ->  C  =  E )  ->  ( z  e.  B  ->  C  =  E ) )  <->  ( (
z  e.  B  -> 
( z  e.  A  ->  C  =  E ) )  ->  ( z  e.  B  ->  C  =  E ) ) )
2513, 24mpbi 199 . . . . 5  |-  ( ( z  e.  B  -> 
( z  e.  A  ->  C  =  E ) )  ->  ( z  e.  B  ->  C  =  E ) )
2610, 25sylbi 187 . . . 4  |-  ( ( z  e.  B  ->  -.  z  e.  D
)  ->  ( z  e.  B  ->  C  =  E ) )
2726alimi 1549 . . 3  |-  ( A. z ( z  e.  B  ->  -.  z  e.  D )  ->  A. z
( z  e.  B  ->  C  =  E ) )
282, 27syl 15 . 2  |-  ( th 
->  A. z ( z  e.  B  ->  C  =  E ) )
2928bnj1142 29137 1  |-  ( th 
->  A. z  e.  B  C  =  E )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   {crab 2560    C_ wss 3165
This theorem is referenced by:  bnj1523  29417
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-ne 2461  df-ral 2561  df-rab 2565  df-in 3172  df-ss 3179
  Copyright terms: Public domain W3C validator